1、2021-2022 学年湖南省永州市道县七年级(上)期中数学试卷学年湖南省永州市道县七年级(上)期中数学试卷 一、选择题(本大题共一、选择题(本大题共 10 个小题,每小题个小题,每小题 4 分,共分,共 40 分,在每小题给出的四个选项中,只有一项是符合分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将你认为正确的选项填涂到答题卡上)题目要求的;请将你认为正确的选项填涂到答题卡上) 1 (4 分)的绝对值是( ) A B C2 D2 2 (4 分)如果收入 15 元记作+15 元,那么支出 20 元记作( )元 A+5 B+20 C5 D20 3 (4 分)有理数(1)2, (1)
2、3,12,|1|,(1) ,中,其中等于 1 的个数是( ) A3 个 B4 个 C5 个 D6 个 4 (4 分)下列说法不正确的是( ) A0 既不是正数,也不是负数 B1 是绝对值最小的数 C一个有理数不是整数就是分数 D0 的绝对值是 0 5 (4 分)1 光年是光一年内在真空中走过的路程,大约是 9 460 500 000 000 千米,用科学记数法来表示应该是( ) A9.46051012千米 B9.46051013千米 C9.46051011千米 D9.46051010千米 6 (4 分)下列各代数式中,不是单项式的是( ) Am2 B C0 D 7 (4 分)下列计算: 0(5
3、)5 (3)+(9)12 () (36)(9)4 (3)39 其中正确的有( ) A1 个 B2 个 C3 个 D4 个 8 (4 分)下列各组中是同类项的是( ) A2mn 与2mn B3ab 与 3abc Cx 与 y D4x2y 与 4xy2 9 (4 分)化简 xy(x+y)的最后结果是( ) A2y B2x C0 D2x2y 10 (4 分)如图,是一组按照某种规律摆放成的图案,则图 5 中三角形的个数是( ) A8 B9 C16 D17 二、填空题(本大题共二、填空题(本大题共 8 个小题,每小题个小题,每小题 4 分,共分,共 32 分;请将答案填在答题卡的答案栏内) 。分;请将
4、答案填在答题卡的答案栏内) 。 11 (4 分)比较大小:4 3(填“”或“”或“” ) 12 (4 分)小刚在计算 41+n 时,误将“+”看成“” ,结果得12,则 41+n 的值应是 13 (4 分)绝对值小于 3.1 的所有整数的积是 14 (4 分)某动物园的门票价格是:成人 x 元/人,学生 y 元/人,有个旅游团有成人 12 人,学生 50 人,则该旅游团应付门票费 元 15 (4 分)若代数式 3x2+7x 和3x2+21 的值互为相反数,则 x 16 (4 分)若 3am1bc2和2a3bn2c2是同类项,则 m+n 17 (4 分)若|x2|+(y3)20,则 xy 18
5、(4 分)已知3,10,15,观察以上计算过程,寻找规律计算 三、解答题(本大题共三、解答题(本大题共 8 个小题,共个小题,共 78 分,解答题要求写出必要的文字说明或解答过程)分,解答题要求写出必要的文字说明或解答过程). 19 (8 分)计算: (1) (2) (2)27+(2)9|5| 20 (8 分)合并同类项: (1)3x214x5x2+4x2 (2)ab3+a3b2ab3+5a3b+8 21 (8 分)先化简,再求值:3x23(x22x+1) ,其中 x1 22 (10 分)有理数 a、b、c 在数轴上的位置如图: (1)判断正负,用“”或“”填空:bc 0,a+b 0,ca 0
6、 (2)化简:|bc|+|a+b|ca| 23 (10 分)已知 a,b 互为倒数,c,d 互为相反数,并且 m 的绝对值为 1,求的值 24 (10 分)一位同学做一道题: “已知两个多项式 A、B,计算 2A+B” 他误将“2A+B”看成“A+2B” ,求得的结果为 9x22x+7已知 Bx2+3x2,求正确答案 25 (12 分)供电部门检修小组乘汽车进行检修,从 A 地出发沿公路东西方向检修,约定向东为正,到收工时,行走记录为(单位:千米) :+15,2,+5,1,+10,3,2,+12,+4,5,+6 (1)计算收工时,小组在 A 地的哪一边,距 A 地多远? (2)若每千米汽车耗油
7、 4 升,求出发到收工耗油多少升? 26 (12 分)如图,数轴上点 A 表示的数为 6,点 B 位于 A 点的左侧,AB10,动点 P 从点 A 出发,以每秒 3 个单位长度的速度沿数轴向左运动,动点 Q 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右运动 (1)点 B 表示的数是 ; (2)若点 P,Q 同时出发,求:当点 P 与 Q 相遇时,它们运动了多少秒?相遇点对应的数是多少?当 PQ5 个单位长度时,它们运动了多少秒? 2021-2022 学年湖南省永州市道县七年级(上)期中数学试卷学年湖南省永州市道县七年级(上)期中数学试卷 参考答案与试题解析参考答案与试题解析 一、选择
8、题(本大题共一、选择题(本大题共 10 个小题,每小题个小题,每小题 4 分,共分,共 40 分,在每小题给出的四个选项中,只有一项是符合分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将你认为正确的选项填涂到答题卡上)题目要求的;请将你认为正确的选项填涂到答题卡上) 1 【分析】根据负数的绝对值等于它的相反数解答 【解答】解:的绝对值是 故选:A 2 【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示 【解答】解: “正”和“负”相对,所以如果收入 15 元记作+15 元,那么支出 20 元记作20 元 故选:D 3 【分析】依据有理数的乘方法则,绝对值、相反
9、数、有理数的除法法则进行计算即可 【解答】解: (1)21; (1)31; 121; |1|1; (1)1; 1 故选:B 4 【分析】先根据:0 既不是正数,也不是负数;整数和分数统称为有理数;0 的绝对值是 0;判断出 A、C、D 正确;再根据绝对值最小的数是 0,得出 B 错误 【解答】解:0 既不是正数,也不是负数,A 正确; 绝对值最小的数是 0,B 错误; 整数和分数统称为有理数,C 正确; 0 的绝对值是 0,D 正确 故选:B 5 【分析】科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝
10、对值与小数点移动的位数相同当原数绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数 【解答】解:9 460 500 000 0009.46051012 故选:A 6 【分析】直接利用单项式定义分析得出答案 【解答】解:A、m2,是单项式,不合题意; B、,是单项式,不合题意; C、0,是单项式,不合题意; D、不是单项式,符合题意 故选:D 7 【分析】原式各项计算得到结果,即可做出判断 【解答】解:0(5)0+55,错误; (3)+(9)12,正确; (),正确; (36)(9)4,错误; (3)327,错误, 其中正确的有 2 个, 故选:B 8 【分析】根据同类项定义:所含字母相
11、同,并且相同字母的指数也相同,这样的项叫做同类项可得答案 【解答】解:A.2mn 与2mn 是同类项,故此选项正确,符合题意; B.3ab 与 3abc,所含字母不尽相同,不是同类项,不符合题意; Cx 与 y,所含字母不相同,不是同类项,不符合题意; D.4x2y 与 4xy2,所含字母相同,但相同字母的指数不相同,不是同类项,不符合题意; 故选:A 9 【分析】去括号化简多项式,得到正确结果 【解答】解:xy(x+y) xyxy 2y 故选:A 10 【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可 【解答】解:由图可知:第一个图案有三角形 1 个第
12、二图案有三角形 1+34 个 第三个图案有三角形 1+3+48 个, 第四个图案有三角形 1+3+4+412 第五个图案有三角形 1+3+4+4+416 故选:C 二、填空题(本大题共二、填空题(本大题共 8 个小题,每小题个小题,每小题 4 分,共分,共 32 分;请将答案填在答题卡的答案栏内) 。分;请将答案填在答题卡的答案栏内) 。 11 【分析】有理数大小比较的法则:正数都大于 0;负数都小于 0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可 【解答】解:根据有理数比较大小的方法,可得 43 故答案为: 12 【分析】先根据错误算法求出 x 的值,然后再代入进行正确计
13、算 【解答】解:根据题意,41x12, 解得 x53, 故知 41+x41+5394 故答案为:94 13 【分析】根据绝对值的概念、有理数的大小比较法则得到绝对值小于 3.1 的整数包括 0,根据 0 乘任何数都得 0 解答 【解答】解:绝对值小于 3.1 的整数包括 0, 绝对值小于 3.1 的所有整数的积等于 0, 故答案为:0 14 【分析】门票费成人门票总价+学生门票总价,根据总价单价数量即可求解 【解答】解:x12+y5012x+50y(元) 故该旅游团应付门票费(12x+50y)元 故答案为: (12x+50y) 15 【分析】利用互为相反数两数之和为 0 列出方程,求出方程的解
14、即可得到 x 的值 【解答】解:根据题意得:3x2+7x3x2+210, 移项合并得:7x21, 解得:x3, 故答案为:3 16 【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求得 m,n 的值,代入求解即可 【解答】解:3am1bc2和2a3bn2c2是同类项, m13,n21, m4,n3, 则 m+n7 故答案为:7 17 【分析】根据非负数的性质列方程求出 x、y 的值,然后代入代数式进行计算即可得解 【解答】解:由题意得,x20,y30, 解得 x2,y3, 所以,xy238 故答案为:8 18 【分析】对于ab(ba)来讲, 等于一个分式, 其中分母是从 1
15、到 b 的 b 个数相乘,分子是从 a 开始乘,乘 b 的个数 【解答】解:3,10,15, 56 故答案为:56 三、解答题(本大题共三、解答题(本大题共 8 个小题,共个小题,共 78 分,解答题要求写出必要的文字说明或解答过程)分,解答题要求写出必要的文字说明或解答过程). 19 【分析】 (1)利用乘法分配律计算即可; (2)先算乘方与绝对值,再算乘法,最后计算加减即可 【解答】解: (1)原式 3+126 3; (2)原式47+(18)5 28+(18)5 5 20 【分析】 (1)把同类项的系数相加,所得结果作为系数,字母和字母的指数不变; (2)把同类项的系数相加,所得结果作为系
16、数,字母和字母的指数不变 【解答】 (1)解:原式3x25x2+4x214x (35+4)x214x 2x214x; (2)解:原式ab32ab3+a3b+5a3b+8 (12)ab3+(1+5)a3b+8 ab3+6a3b+8 21 【分析】根据整式的混合运算法则,先计算乘法,再计算减法,最后将 x1 代入求值 【解答】解:3x23(x22x+1) 3x23x2+6x3 6x3 当 x1 时,原式6x36133 22 【分析】 (1)根据数轴判断出 a、b、c 的正负情况,然后分别判断即可; (2)去掉绝对值号,然后合并同类项即可 【解答】解: (1)由图可知,a0,b0,c0 且|b|a|
17、c|, 所以,bc0,a+b0,ca0; 故答案为:,; (2)|bc|+|a+b|ca| (cb)+(ab)(ca) cbabc+a 2b 23 【分析】利用倒数,相反数,以及绝对值的定义求出 ab,c+d,m 的值,代入计算即可求出值 【解答】解:a、b 互为倒数,c、d 互为相反数,m 的绝对值为 1, ab1,c+d0,m1 或1, 当 m1 时, 2110 1; 当 m1 时, 21+10 3 故的值为 1 或 3 24 【分析】本题考查整式的加减运算灵活运用,要根据题意列出整式,再去括号,然后合并同类项进行运算 【解答】根据题意得 A9x22x+72(x2+3x2) 9x22x+7
18、2x26x+4 (92)x2(2+6)x+4+7 7x28x+11 2A+B2(7x28x+11)+x2+3x2 14x216x+22+x2+3x2 15x213x+20 25 【分析】 (1)根据有理数的加法,可得答案; (2)根据单位耗油量乘以行车路程,可得答案 【解答】解; (1)15+(2)+5+(1)+10+(3)+(2)+12+4+(5)+639(km) 答:该小组在 A 地的东边,距 A 东面 39km; (2) (15+|2|+5+|1|+10+|3|+|2|+12+4+|5|+6)4654260(升) 答:小组从出发到收工耗油 260 升 26 【分析】 (1)由点 B 表示
19、的数点 A 表示的数线段 AB 的长,可求出点 B 表示的数; (2)设运动的时间为 t 秒,则此时点 P 表示的数为 63t,点 Q 表示的数为 2t4 由点 P,Q 重合,可得出关于 t 的一元一次方程,解之即可得出结论; 分点 P,Q 相遇前及相遇后两种情况,由 PQ5,可得出关于 t 的一元一次方程,解之即可得出结论 【解答】解: (1)点 A 表示的数为 6,AB10,且点 B 在点 A 的左侧, 点 B 表示的数为 6104 故答案为:4; (2)设运动的时间为 t 秒,则此时点 P 表示的数为 63t,点 Q 表示的数为 2t4 依题意,得:63t2t4, 解得:t2, 2t40 答:当点 P 与 Q 相遇时,它们运动了 2 秒,相遇点对应的数是 0; 点 P,Q 相遇前,63t(2t4)5, 解得:t1; 当 P,Q 相遇后,2t4(63t)5, 解得:t3 答:当 PQ5 个单位长度时,它们运动了 1 或 3 秒