欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    (新高考)2021届高三大题优练7:圆锥曲线与面积有关的问题(教师版)

    • 资源ID:202634       资源大小:712.43KB        全文页数:13页
    • 资源格式: DOCX        下载积分:30积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要30积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    (新高考)2021届高三大题优练7:圆锥曲线与面积有关的问题(教师版)

    1、圆锥曲线与面积有关的问题大题优练7优选例题例1已知椭圆的左右焦点分别为,离心率为,点是椭圆上一点,的周长为(1)求椭圆的方程;(2)直线与椭圆交于,两点,且四边形为平行四边形,求证:的面积为定值【答案】(1);(2)证明见解析【解析】(1)因为的周长为,所以,即又离心率,解得,椭圆的方程为(2)设,将代入,消去并整理得,则,四边形为平行四边形,得,将点坐标代入椭圆方程得,点到直线的距离为,平行四边形的面积为,故平行四边形的面积为定值为例2已知椭圆的左、右顶点分别为A,B,上、下顶点分别为C,D,右焦点为F,离心率为,其中(1)求椭圆的标准方程;(2)过椭圆的左焦点的直线l与椭圆M交于E,H两点

    2、,记与的面积分别为和,求的最大值【答案】(1);(2)【解析】(1)有条件可知,又,椭圆方程为(2)当直线l无斜率时,直线方程为,此时,;当直线l斜率存在时,设直线方程为,设,联立得,消掉y得,显然,方程有根,此时因为,所以,(时等号成立),所以的最大值为例3已知椭圆的左右焦点分别是,且离心率为,点为椭圆下上动点,面积的最大值为(1)求椭圆的标准方程;(2)若是椭圆的上顶点,直线交椭圆于点,过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方若,求直线的方程【答案】(1);(2)【解析】(1)面积的最,又,所以,解得,即,故椭圆C的标准方程为(2)由题可得直线的方程为,联立,得,则,因为

    3、,则,得,当直线的斜率为0时,不符合题意;故设直线的方程为,由点P在点Q的上方,则,联立,得,则,得,则,得,又,则,不符合题意,所以,故直线的方程为模拟优练1已知抛物线的顶点为坐标原点,焦点为圆与圆的公共点(1)求的方程;(2)直线与交于,两点,点在上,且在这一段曲线上运动(异于端点与),求面积的取值范围【答案】(1);(2)【解析】(1)联立,得,因此的焦点为,设抛物线,则,则,故的方程为(2)联立,得或,不妨假设,则设,则,到直线的距离,因为当时,函数的值域为,所以,则,故面积的取值范围是2椭圆的左、右焦点分别为、,离心率,过的直线l交C于点A、B,且的周长为8(1)求椭圆C的标准方程;

    4、(2)点O为坐标原点,求面积S的取值范围【答案】(1);(2)【解析】(1)因为的周长为8,由椭圆的定义知,故,又,所以,所以椭圆C的标准方程为(2)由题意可设直线l的方程为,由,显然且,令,易知S在单调递减,从而3已知椭圆的离心率为,且经过点设椭圆的左、右焦点分别为、,是椭圆上的一个动点(异于椭圆的左、右端点)(1)求椭圆的方程;(2)过点作椭圆的切线,过点作的垂线,垂足为,求面积的最大值【答案】(1);(2)【解析】(1)由椭圆的离心率,可得,即有,再结合、三者的关系可得,椭圆的方程可化为,将点代入上述椭圆方程可得,求解得,所以,椭圆的方程为(2)设直线,联立直线与椭圆的方程可得若直线与椭

    5、圆相切,可得上述方程只有一个解,即有,化简可得,(*)设点的坐标为,过点作的垂线为,联立与求得,由上式可得,将(*)代入上式可得,故可知点的轨迹为以原点为圆心,以为半径的圆是椭圆上的异于端点的动点,故该轨迹应去掉点的面积为,即面积的最大值为4设点,分别是椭圆的左、右焦点,P为椭圆C上任意一点,且的最小值为0(1)求椭圆C的方程;(2)如图,动直线与椭圆有且仅有一个公共点,作,分别交直线于,两点,求四边形的面积的最大值【答案】(1);(2)2【解析】(1)设P(x,y),则,所以,当时,取到最小值0,则,则,所以椭圆C的方程为(2)将直线l的方程代入椭圆C的方程中,得,由直线l与椭圆C有且仅有一

    6、个公共点可知,化简得根据点到直线距离公式,可得,当时,四边形是梯形,设直线l的倾斜角为,则,所以,化简整理,当时,;当k0时,四边形F1MNF2是矩形,所以四边形F1MNF2面积S的最大值为25已知椭圆的长轴长为4,离心率为(1)求椭圆C的方程;(2)已知点,直线l交椭圆C于P,Q两点(点A,B位于直线l的两侧)若直线l过坐标原点O,设直线AP,AQ,BP,BQ的斜率分别为k1,k2,k3,k4求证:为定值;若直线l的斜率为,求四边形APBQ的面积的最大值【答案】(1);(2)证明见解析;【解析】(1)由题意得,解得,所以椭圆C的方程为(2)点A,B的坐标分别为,设点P的坐标为(m,n),由对

    7、称性知点Q的坐标为,所以,所以又因为点P在椭圆上,所以,即,所以,同理,所以,为定值由题意,设由点,位于直线l的两侧,得,解得由,消去y并整理,得,由判别式,得当时,显然,判别式设,由根与系数的关系得,点到直线的距离因为,所以点到直线的距离因为,所以因此,四边形APBQ的面积因为,显然,当时,6已知椭圆的两个顶点分别为,焦点在轴上,离心率为(1)求椭圆的方程;(2)点为轴上一点,过作轴的垂线交椭圆于不同的两点,过作的垂线交于点求证:与的面积之比为【答案】(1);(2)证明见解析【解析】(1)由椭圆的焦点在轴上,设椭圆方程,则,则,椭圆的方程(2)证明:设,则直线的斜率,直线的斜率,直线的方程,直线的斜率,直线的方程,解得,过做轴,则,则,与的面积之比为


    注意事项

    本文((新高考)2021届高三大题优练7:圆锥曲线与面积有关的问题(教师版))为本站会员(秦**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开