欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2022届高三数学一轮复习考点08:函数的概念与运算(解析版)

    • 资源ID:202852       资源大小:869.83KB        全文页数:11页
    • 资源格式: DOCX        下载积分:30积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要30积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022届高三数学一轮复习考点08:函数的概念与运算(解析版)

    1、考点 08 函数的概念与运算 【命题解读】【命题解读】 通过函数概念和函数解析式的学习,从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。学生能更好地理解数学概念、命题、方法和体系,能通过抽象、概括去认识、理解、把握事物的数学本质,能逐渐养成一般性思考问题的习惯,能在其他学科的学习中主动运用数学抽象的思维方式解决问题,逐步养成学习者的数学抽象能力。 【基础知识回顾基础知识回顾】 1函数的有关概念 (1)函数的定义域、值域: 在函数 yf(x),xA 中,x 叫做自变量,x 的取值范围 A 叫做函数的定义

    2、域;与 x 的值相对应的 y 值叫做函数值,函数值的集合f(x)|xA叫做函数的值域 (2)函数的三要素:定义域、值域和对应关系 (3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据 2函数的三种表示法 解析法 图象法 列表法 就是把变量 x,y 之间的关系用一个关系式 yf(x)来表示,通过关系式可以由 x 的值求出 y 的值. 就是把 x,y 之间的关系绘制成图象, 图象上每个点的坐标就是相应的变量 x,y 的值. 就是将变量 x,y 的取值列成表格, 由表格直接反映出两者的关系. 3分段函数 若函数在其定义域内,对于定义域内的不同取值区间,有

    3、着不同的对应关系,这样的函数通常叫做分段函数 1、下列各组函数中,表示同一函数的是( ) Af(x)eln x,g(x)x Bf(x)x24x2,g(x)x2 Cf(x)sin 2x2cos x,g(x)sin x Df(x)|x|,g(x) x2 【答案】D 【解析】A,B,C 的定义域不同,所以答案为 D. 2、 (江苏省南通市海安高级中学 2019-2020 学年高三 9 月月考)函数256yxx的定义域是_ 【答案】2,3 【解析】依题意2560 xx,即256320 xxxx,解得2,3x. 3、设函数 f(x)1x2 (x1),x2x2 (x1),则 f1f(2)的值为( ) A1

    4、516 B2716 C89 D18 【答案】 A 【解析】当 x1 时,f(x)x2x2,则 f(2)22224,1f(2)14,当 x1 时,f(x)1x2, f1f(2)f1411161516 4、(2019 南京三模)若函数 f(x)2x, x0f(x2),x0,则 f(log23) 【答案】 34 【解析】因为 12log 32,所以 f(log23)f(log232)22log 3log 3 2223224. 5、已知 f(x)是一次函数,且满足 3f(x1)2f(x1)2x17,则 f(1)_ 【答案】9 【解析】 设 f(x)axb(a0),则 3f(x1)2f(x1)3ax3a

    5、3b2ax2a2bax5ab,即ax5ab2x17 不论 x 为何值都成立 a2,517,ba,解得2,7,abf(x)2x7,从而得 f(1)9. 6、函数 yf(x)的图象如图所示,那么,f(x)的定义域是_;值域是_;其中只有唯一的 x 值与之对应的 y 值的范围是_ 【答案】3,02,3 1,5 1,2)(4,5 【解析】观察图像结合函数的概念。 考向一 函数的概念 例 1 (1)已知 A1,2,3,k,B4,7,a4,a23a,aN*,kN*,xA,yB,f:xy3x1 是从定义域 A 到值域 B 的一个函数,求 a,k 的值; (2)下列各选项给出的两个函数中,表示相同函数的有(

    6、) A( )f xx与2( )g xx B( ) |1|f tt与( ) |1|g xx C( )f xx与2( )log 2xg x D21( )1xf xx与( )1g xx 【答案】BC 【解析】(1)(定义法)由对应法则 14,27,310,又 k3k1,故 a23a10(a410 舍去),解得 a2 或 a5(舍去),故 3k1a416,解得 k5.a2,k5.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断是相同函数 (2)对于A,函数( )f xx与2( )|g xxx的解析式不同,表示相同函数; 对于B,函数( ) |1|f tt的定义域为R,( ) |1|g xx的

    7、定义域为R,定义域相同,对应关系也相同,是相同函数; 对于C,函数( )f xx的定义域为R,2( )log 2g x xx的定义域为R,定义域相同,对应关系也相同,是相同函数; 对于D,函数21( )11xf xxx的定义域为(,1)( 1,),( )1g xx的定义域为R,定义域不同,不是相同函数 故选:BC 变式 1、下列各对函数中是同一函数的是( ) Af(x)2x1 与 g(x)2xx0 Bf(x) (2x1)2与 g(x)|2x1|; Cf(n)2n2(nZ)与 g(n)2n(nZ); Df(x)3x2 与 g(t)3t2. 【答案 BD 【解析】 函数 g(x)2xx02x1,函

    8、数 g(x)的定义域为x|x0,两个函数的定义域不相同,不是同一函数;f(x) (2x1)2|2x1|与 g(x)|2x1|的定义域和对应关系相同,是同一函数;f(n)2n2(nZ)与 g(n)2n(nZ)的对应关系不相同,不是同一函数;f(x)3x2 与 g(t)3t2 的定义域和对应关系相同,是同一函数 变式2、 已知集合Px|0 x4, Qy|0y2, 下列从P到Q的各对应关系f不是函数的是_ (填序号) f:xy12x;f:xy13x;f:xy23x;f:xy x. 【答案】 : 【解析】 :对于,因为当 x4 时,y23483Q,所以不是函数 变式 3、若一系列函数的解析:式相同,值

    9、域相同但定义域不同,则称这些函数为“孪生函数”,那么函数解析:式为 y2x21,值域为3,19的“孪生函数”共有_个 【答案】 : 9 【解析】 :若 y3,则由 2x213,得 x 1; 若 y19,则由 2x2119,得 x 3 所以函数 f(x)定义域可以是1, 3, 1,3, 1,3, 1, 3, 1,1,3, 1,1, 3, 3,1,3,3,1,3,1,3,1,3,共有 9 个孪生函数 方法总结:(1)定义是解题的重要依据,它有双重功能:一是判定;二是性质要判定一个对应是不是从定义域 A 到值域 B 的一个函数,就要看其是否满足函数的定义,反之亦然; (2)函数的值域可由定义域和对应

    10、法则唯一确定,当且仅当定义域和对应法则都相同的函数才是同一函数,而定义域、值域和对应法则中有一个不同就不是同一函数 考向二 函数的解析式 例 3、(1)已知 f2x1 lg x,求 f(x)的解析式; (2)已知 f(x)是二次函数,且 f(0)0,f(x1)f(x)x1,求 f(x)的解析式; (3)已知函数 f(x)满足 f(x)2f(x)2x,求 f(x)的解析式 【解答】 (1)(换元法)令2x1t,得x2t1, 代入得f(t)lg2t1,又x0,所以t1, 故f(x)的解析式是f(x)lg2x1, x(1,) (2)(待定系数法)设f(x)ax2bxc(a0), 由f(0)0,知c0

    11、,f(x)ax2bx, 又由f(x1)f(x)x1, 得a(x1)2b(x1)ax2bxx1, 即ax2(2ab)xabax2(b1)x1, 所以2abb1,ab1, 解得ab12. 所以f(x)12x212x,xR R. (3)(解方程组法)由f(x)2f(x)2x, 得f(x)2f(x)2x, 2, 得 3f(x)2x12x. 即f(x)2x12x3. 故f(x)的解析式是f(x)2x12x3,xR R. 变式 1、已知 f(x)是二次函数,且 f(0)0,f(x1)f(x)x1,求 f(x)的解析式 【答案】f(x)12x212x, 【解析】设 f(x)ax2bxc(a0), 由 f(0

    12、)0,知 c0,f(x)ax2bx, 又由 f(x1)f(x)x1, 得 a(x1)2b(x1)ax2bxx1, 即 ax2(2ab)xabax2(b1)x1, 所以 2abb1,ab1, 解得 ab12. 所以 f(x)12x212x,xR. 变式 2、若函数 f(x)对于任意实数 x 恒有 f(x)2f(x)3x1,则 f(x)等于( ) Ax+1 Bx1 C2x+1 D3x+3 【答案】A 【解析】函数 f(x)对于任意实数 x 恒有 f(x)2f(x)3x1, 令 xx,则:f(x)2f(x)3(x)1 则:, 解方程组得:f(x)x+1 故选:A 变式 3、如图,在边长为 4 的正方

    13、形 ABCD 上有一点 P,沿着折线 BCDA 由 B 点(起点)向 A 点(终点)移动,设点 P 移动的路程为 x,ABP 的面积为 yf(x) (1)求ABP 的面积与点 P 移动的路程间的函数关系式; (2)作出函数的图像,并根据图像求 y 的最大值 【解析】 (1)考虑到点 P 在正方形 ABCD 四边上移动时 ABP 的面积 y 与路程 x 的解析式不同,应分段进行考虑,首先,这个函数的定义域为(0,12 当 0 x4 时,Sf(x)124x2x; 当 4x8 时,Sf(x)8; 当 8x12 时,Sf(x)124(12x)2(12x)242x. 这个函数的解析式为 f(x)2x,(

    14、0,48,(4,8242 ,(8,12xxx x (2)作出其图像如图所示,由图像可知,f(x)max8.y 的最大值为 8. 方法总结:函数解析式的常见求法 函数解析式的求法主要有以下几种: (1)换元法:已知复合函数 f(g(x)的解析式,可用换元法,此时要注意新元的取值范围; (2)配凑法:由已知条件 f(g(x)f(x),可将 f(x)改写成关于 g(x)的表达式,然后以 x 替代 g(x),便得 f(x)的解析式; (3)待定系数法: 已知函数的类型(如一次函数、 二次函数)可用待定系数法, 比如二次函数 f(x)可设为 f(x)ax2bxc(a0),其中 a,b,c 是待定系数,根

    15、据题设条件,列出方程组,解出 a,b,c 即可 (4)解方程组法: 已知 f(x)满足某个等式, 这个等式除 f(x)是未知量外, 还有其他未知量, 如 f1x(或 f(x)等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出 f(x) 考向三 分段函数 例 3、(1)已知函数 f(x)x2x3,x1,lg(x21),x0,若 f(a1)12, 则实数 a_ (4) 、(2018 南京、盐城、连云港、徐州二模)已知函数 f(x) 12x1, x0,x12, x0,则不等式 f(x)1的解集是_ 【答案】(1)0 2 23; (2)6(3) log23(4) 4,2 【解析】(1)f(3

    16、)lg(3)21lg 101, f(f(3)f(1)0, 当 x1 时,f(x)x2x32 23,当且仅当 x 2时,取等号,此时 f(x)min2 230; 当 x0,即 a1 时,f(a1)2a1112, 解得 alog23. (4)当 x0 时,不等式 f(x)1 可以化为12x11, 解之得 x4,此时4x0;当 x0 时,不等式 f(x)1 可以化为(x1)21, 解之得 02,若 f(2m)f(2m),则 m 的值为_ (2)设函数 f(x)x3x 1,12 ,1xx,则满足 f(f(a)2f(a)的 a 的取值范围是 ; 【答案】(1)m83.(2)a23. 【解析】 (1)11

    17、. 8 或83 当 m0 时,2m2,所以 3(2m)m(2m)2m,所以 m8;当 m2,2m2,所以 3(2m)m(2m)2m,所以 m83. (2)由 f(f(a)2f(a),得 f(a)1.当 a1 时,有 3a11,a23,23a1;当 a1 时,有 2a1,a0,a1.综上,a 的取值范围是 a23. 方法总结:(1)求分段函数的函数值,首先要确定自变量的范围,再通过分类讨论求解; (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围 1、(2014 江西)已知函数

    18、|5)(xxf,)()(2Raxaxxg,若1)1 (gf,则a A1 B2 C3 D-1 【答案】A 【解析】因为 (1)1f g,且| |( )5xf x ,所以(1)0g,即2110a ,解得1a 2、.(2014 山东)函数1)(log1)(22xxf的定义域为( ) A)210( , B)2(, C), 2()210(, D)2210(, 【答案】C 【解析】2222(log)10log1log1xxx 或,解得1202xx或 3、 (2017 新课标)设函数1,0( )2 ,0 xxxf xx,则满足1( )()12f xf x的x的取值范围是_ 【答案】1(,)4 【解析】当12

    19、x 时,不等式为12221xx恒成立; 当102x,不等式12112xx 恒成立; 当0 x时,不等式为11112xx ,解得14x ,即104x; 综上,x的取值范围为1(,)4 4、(2015 新课标 1,文 10)已知函数1222,1( )log (1),1xxf xxx,且( )3f a ,则(6)fa A74 B54 C34 D14 【答案】A 【解析】( )3f a ,当1a 时,1( )223af a ,则121a ,此等式显然不成立,当1a 时,2log (1)3a ,解得7a,(6)fa( 1)f =1 17224 ,故选 A 5、 (2015 新课标 2,理 5)设函数21

    20、1 log (2),1,( )2,1,xx xf xx,2( 2)(log 12)ff( ) A3 B6 C9 D12 【答案】C 【解析】由已知得2( 2)1log 43f ,又2log 121,所以22log 12 1log 62(log 12)226f,故2( 2)(log 12)9ff,故选 C 6、 (2014 卷 1,文 15)设函数 113,1,1,xexf xxx则使得 2f x 成立的x的取值范围是_. 【答案】(,8. 【解析】原不等式等价于112xxe或1312xx,解得8x,故x的取值范围是(,8. 7、德国数学家狄里克雷(Dirichlet,PeterGustavLe

    21、jeune,18051859)在 1837 年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,那么y是x的函数”这个定义较清楚地说明了函数的内涵只要有一个法则,使得取值范围中的每一个x,有一个确定的y和它对应就行了,不管这个法则是用公式还是用图象、表格等形式表示,例如狄里克雷函数( )D x,即:当自变量取有理数时,函数值为 1;当自变量取无理数时,函数值为 0下列关于狄里克雷函数( )D x的性质表述正确的是( ) A( )0D B( )D x的值域为0,1 C( )D x的图象关于直线1x 对称 D( )D x的图象关于直线2x 对称 【答案】ABCD 【解析】 :由题意可

    22、得 0,1,xD xxQ为无理数, 由于为无理数,则( )0D,故A正确; 结合函数的定义及分段函数的性质可知,函数的值域0,1,故B正确; 结合函数可知,当xQ时,( )1D x 关于1x ,2x 都对称,当x为无理数时,( )0D x 关于1x ,2x 都对称 故选:ABCD 8、 根据下列条件,求函数的解析式: (1)已知 f( x1)x2 x; (2)若 f(x)对于任意实数 x 恒有 2f(x)f(x)3x1; (3)已知 f(0)1,对任意的实数 x,y 都有 f(xy)f(x)y(2xy1) 【解】 (1)(方法 1)(换元法):设 t x1,则 x(t1)2(t1)代入原式有 f(t)(t1)22(t1)t22t12t2t21.f(x)x21(x1) (方法 2)(配凑法):x2 x( x)22 x11( x1)21, f( x1)( x1)21( x11),即 f(x)x21(x1) (2)用x 换 x 得 2f(x)f(x)3x1,与原式联立消去 f(x)得 f(x)x1. (3)令 x0,得 f(y)f(0)y(y1)1y2y,f(y)y2y1,即 f(x)x2x1.


    注意事项

    本文(2022届高三数学一轮复习考点08:函数的概念与运算(解析版))为本站会员(秦**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开