欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2022届高三数学(新课标Ⅱ卷)理科黄金试卷(1)含答案解析

    • 资源ID:202930       资源大小:2.06MB        全文页数:20页
    • 资源格式: DOCX        下载积分:30积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要30积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022届高三数学(新课标Ⅱ卷)理科黄金试卷(1)含答案解析

    1、2022届高三数学(新课标卷)黄金试卷(1)理科数学本卷满分150分,考试时间120分钟。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数满足,则( )。A、 B、C、D、2已知集合,则集合的真子集的个数为( )。A、B、C、D、3王老师是高三的班主任,为了在新型冠状病毒疫情期间更好地督促班上的学生完成作业,王老师特地组建了一个学习小组的钉钉群,群的成员由学生、家长、老师共同组成。已知该钉钉群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数。则该钉钉群人数的最小值为( )。A、

    2、B、C、D、4已知,则( )。A、 B、C、D、5设曲线()上任意一点处切线斜率为,则函数的部分图像可以为( )。A、 B、 C、 D、6某公司为了调查产品在、三个城市的营销情况,派甲、乙、丙、丁四人去调研,每人只去一个城市每个城市必须有人去,且甲乙不能去同一个城市,则不同的派遣方法有( )。A、种B、种C、种D、种7在中,点满足,若,则的值为( )。A、B、C、D、8已知某几何体的三视图如图所示,则该几何体的体积为( )。A、B、C、D、9已知函数为定义在上的奇函数,当时,则关于的函数()的所有零点之和为( )。A、B、C、D、10已知双曲线:(,)的左焦点为,过原点的直线与双曲线左、右两支

    3、分别交于点、,且满足,虚轴的上端点在圆内,则该双曲线离心率的取值范围为( )。A、B、C、D、11设,若,恒成立,则实数的取值范围为( )。A、B、C、D、12设棱锥的底面是正方形,且,如果的面积为,则能够放入这个棱锥的最大球的半径为( )。A、B、C、D、二、填空题:本题共4小题,每小题5分,共20分。13已知向量、为单位向量,若,则与所成角的余弦值为 。14已知实数、满足约束条件,且目标函数的最大值为,则的取值范围是 。15抛物线()的焦点为,准线为,、是抛物线上两个动点,且满足,设线段的中点在上的投影为,则的最大值是 。16在中,角、的对边分别为、,若,则 , 。(本题第一空2分,第二空

    4、3分)三、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤)17(12分)已知数列的前项和为,且(,)。(1)设,求证:数列为等比数列;(2)求数列的前项和。18(12分)如左图,在边长为的菱形中,且。将梯形沿直线折起,使平面,如右图,是上的点,。(1)求证:直线平面;(2)求平面与平面所成角的余弦值。19(12分)某钢管生产车间生产一批钢管,质检员从中抽出着十根对其直径(单位:)进行测量,得出这批钢管的直径服从正态分布。(1)当质检员随机抽检时,测得一根钢管的直径为,他立即要求停止生产,检查设备,请你根据所学知识,判断该质检员的决定是否有道理,并说明判断的依据;(2)

    5、如果钢管的直径满足为合格品(合格品的概率精确到),现要从根该种钢管中任意挑选根,求次品数的分布列和数学期望。(参考数据:若,则,)。20(12分)已知抛物线:,过点的动直线与抛物线交于不同的两点、,分别以、为切点作抛物线的切线、,直线、交于点。(1)求动点的轨迹方程;(2)求面积的最小值,并求出此时直线的方程。21(12分)已知函数,其中,。(1)当时,证明不等式恒成立;(2)若(),证明有且仅有两个零点。请考生在第22、23两题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分。22选修4-4:坐标系与参数方程(10分)在直角坐标系中,直线的参数方程为(为参数)。以

    6、坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为。(1)写出直线的普通方程及曲线的直角坐标方程;(2)已知点、,直线过点且与曲线相交于、两点,设线段的中点为,求的值。23选修4-5:不等式选讲(10分)已知函数。(1)当时,解不等式;(2)若存在,使得不等式的解集非空,求的取值范围。2022届高三数学(新课标卷)黄金试卷(1)理科数学本卷满分150分,考试时间120分钟。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数满足,则( )。A、B、C、D、【答案】C【解析】,故选C。2已知集合,则集合的真子集的个数为

    7、( )。A、B、C、D、【答案】C【解析】联立解得或或,故,有个元素,则真子集的个数为,故选C。3王老师是高三的班主任,为了在新型冠状病毒疫情期间更好地督促班上的学生完成作业,王老师特地组建了一个学习小组的钉钉群,群的成员由学生、家长、老师共同组成。已知该钉钉群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数。则该钉钉群人数的最小值为( )。A、B、C、D、【答案】C【解析】设教师人数为,家长人数为,女学生人数为,男学生人数为,、,则,则,又“教师人数的两倍多于男学生人数,当时,此时总人数最少为,故选C。4已知,则( )。A、 B、C、D、

    8、【答案】D【解析】由可得,故选D。5设曲线()上任意一点处切线斜率为,则函数的部分图像可以为( )。A、 B、 C、 D、【答案】D【解析】()上任一点处切线率为,该函数为奇函数,且当时,故选D。6某公司为了调查产品在、三个城市的营销情况,派甲、乙、丙、丁四人去调研,每人只去一个城市每个城市必须有人去,且甲乙不能去同一个城市,则不同的派遣方法有( )。A、种B、种C、种D、种【答案】D【解析】人不同组合方案有:若甲、乙各自单独为一组,有种,若甲与丙、丁之一为一组,有种,若乙与丙、丁之一为一组,有种,故不同的派遣方法有种,故选D。7在中,点满足,若,则的值为( )。A、B、C、D、【答案】C【解

    9、析】取的中点为,连接,则,设,则,解得,是等边三角形,故选C。8已知某几何体的三视图如图所示,则该几何体的体积为( )。A、B、C、D、【答案】C【解析】还原空间几何体如图,可知该几何体为底面是正三角形的直三棱柱中的一个五面体,其中为的中点,直三棱柱的高为,底面正三角形的边长为,高为,故该几何体的体积为,故选C。9已知函数为定义在上的奇函数,当时,则关于的函数()的所有零点之和为( )。A、B、C、D、【答案】D【解析】为定义在上的奇函数,先画当时的图像如图,再围绕原点将的图像旋转得到时的图像,的零点可以看做与()的图像的交点,由图像可知交点一共有个,设交点的横坐标从左到右依次为、,则,且满足

    10、,解得,故选D。10已知双曲线:(,)的左焦点为,过原点的直线与双曲线左、右两支分别交于点、,且满足,虚轴的上端点在圆内,则该双曲线离心率的取值范围为( )。A、B、C、D、【答案】A【解析】设双曲线的右焦点为连接、,如图所示,由对称性可知,、关于原点对称,则,又,四边形为平行四边形,则,虚轴的上端点在圆内,解得,则,即,得,故选A。11设,若,恒成立,则实数的取值范围为( )。A、B、C、D、【答案】A【解析】将不等式变形为,当时,不等式恒成立;当时,不等式变形为,记,则,而,因此在上单调递增,故,故,的取值范围是,故选A。12设棱锥的底面是正方形,且,如果的面积为,则能够放入这个棱锥的最大

    11、球的半径为( )。A、B、C、D、【答案】A【解析】,平面,面面,记是的中点,从而,平面,设球是与平面、平面、平面都相切的球,由图得截面图及内切圆,不妨设平面,于是是的内心,设球的半径为,则,设,当且仅当,即时等号成立,当时,满足条件的球最大半径为,故选A。二、填空题:本题共4小题,每小题5分,共20分。13已知向量、为单位向量,若,则与所成角的余弦值为 。【答案】【解析】由数量积公式得,。14已知实数、满足约束条件,且目标函数的最大值为,则的取值范围是 。【答案】【解析】作图,目标函数改写为,作直线,目标直线斜率为负,且截距最大时也最大,则时目标函数过点,目标直线为,与交于点,则,、,设,表

    12、示点到点的斜率,其在为正数时范围为,在负值时范围为,又,则的取值范围为。15抛物线()的焦点为,准线为,、是抛物线上两个动点,且满足,设线段的中点在上的投影为,则的最大值是 。【答案】【解析】设、,如图所示,根据抛物线的定义,可知、,在梯形中,有,在中,又,故的最大值是。16在中,角、的对边分别为、,若,则 , 。(本题第一空2分,第二空3分)【答案】 【解析】由正弦定理得,又由题意可知得,即,则,即,解得,又,由余弦定理得,;由得,。三、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤)17(12分)已知数列的前项和为,且(,)。(1)设,求证:数列为等比数列;(2)

    13、求数列的前项和。【解析】(1)由已知得,即(), 2分(), 3分又,且,故数列是首项为、公比为的等比数列; 4分(2)由(1)知,则, 5分设, 6分, 7分两式相减得:, 9分解得, 10分数列的前项和。 12分18(12分)如左图,在边长为的菱形中,且。将梯形沿直线折起,使平面,如右图,是上的点,。(1)求证:直线平面;(2)求平面与平面所成角的余弦值。【解析】(1)证明:如图,连接,交于点,连接, 1分、, 2分, 3分平面,平面,平面; 4分(2)解:以点为原点,以、所在直线为、轴建立空回直角坐标系,如图所示,且,则, 5分又、,则、, 6分设平面的法向量为,则, 8分令,则,则,

    14、9分又平面的法向量为, 10分设平面与平面所成角的平面角为, 11分则。 12分19(12分)某钢管生产车间生产一批钢管,质检员从中抽出着十根对其直径(单位:)进行测量,得出这批钢管的直径服从正态分布。(1)当质检员随机抽检时,测得一根钢管的直径为,他立即要求停止生产,检查设备,请你根据所学知识,判断该质检员的决定是否有道理,并说明判断的依据;(2)如果钢管的直径满足为合格品(合格品的概率精确到),现要从根该种钢管中任意挑选根,求次品数的分布列和数学期望。(参考数据:若,则,)。【解析】(1)、,且, 1分, 3分此事件为小概率事件,该质检员的决定有道理; 4分(2)、,由题意可知钢管直径满足

    15、:为合格品, 5分故试钢管为合格品的概率的为,根管中,合格品根,次品根, 6分任意挑选根,则次品数的可能取值为:、, 10分则次品数的分布列为:则次品数的数学期望。 12分20(12分)已知抛物线:,过点的动直线与抛物线交于不同的两点、,分别以、为切点作抛物线的切线、,直线、交于点。(1)求动点的轨迹方程;(2)求面积的最小值,并求出此时直线的方程。【解析】(1)设,以为切点的切线为,整理得:, 1分同理:以为切点的切线为:, 2分联立方程组:,解得, 3分设直线的方程为:,联立方程组得:, 5分,点的轨迹方程为; 6分(2)由(1)知:, 8分又到直线的距离为:, 9分, 11分时,取得最小

    16、值,此时直线的方程为。 12分21(12分)已知函数,其中,。(1)当时,证明不等式恒成立;(2)若(),证明有且仅有两个零点。【解析】(1)令,则, 1分当时,在上单调递减, 3分,即不等式恒成立; 4分(2)的定义城为,且,令,则在上单调递增,当时, 6分, 7分故在上有唯一解,从而在上有唯一解,不妨设为,则,当时,在上单调递减,当时, ,在上单调递增,因此是唯一极值点, 8分,即在上有唯一零点, 9分,由(1)可知,即在上有唯一零点, 11分综上,在上有且仅有两个零点。 12分请考生在第22、23两题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分。22选修4

    17、-4:坐标系与参数方程(10分)在直角坐标系中,直线的参数方程为(为参数)。以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为。(1)写出直线的普通方程及曲线的直角坐标方程;(2)已知点、,直线过点且与曲线相交于、两点,设线段的中点为,求的值。【解析】(1)由直线的参数方程消去,得到直线的普通方程为:, 2分由得,曲线的直角坐标方程为, 4分(2)由题意可知直线必过点, 5分直线的参数方程为(为参数), 6分代入中得:,设、点所对应的参数分别为、, 8分,。 10分23选修4-5:不等式选讲(10分)已知函数。(1)当时,解不等式; (2)若存在,使得不等式的解集非空,求的取值范围。【解析】(1)当时,函数,解不等式转化为:,即, 2分,解得,不等式的解为; 4分(2)由得,设,则不等式的解集非空,等价于, 6分由得,由题意知存在,使得上式成立, 8分而函数在上的最大值为,即的取值范围是。 10分


    注意事项

    本文(2022届高三数学(新课标Ⅱ卷)理科黄金试卷(1)含答案解析)为本站会员(秦**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开