欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    5.3诱导公式 教学设计2

    • 资源ID:206082       资源大小:78.79KB        全文页数:6页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    5.3诱导公式 教学设计2

    1、【新教材】【新教材】5.3 诱导公式诱导公式 教学设计(人教教学设计(人教 A 版)版) 本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。 课程目标课程目标 1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式

    2、将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题 2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。 数学学科素养数学学科素养 1.数学抽象:理解六组诱导公式; 2.逻辑推理: “借助单位圆中三角函数的定义推导出六组诱导公式; 3.数学运算:利用六组诱导公式进行化简、求值与恒等式证明. 重点:重点:借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数; 难点:难点:解决有关三角函数求值、化简和恒等式证明问题 教学

    3、方法:教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。 教学工具:教学工具:多媒体。 一、 情景导入情景导入 利用诱导公式(一),将任意范围内的角的三角函数值转化到角后,又如何将角间的角转化到角呢? )2 , 0)2 , 0)2, 0 除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。那么它们的三角函数值有何关系呢? 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探. 二、预习课本,引入新课二、预习课本,引入新课 阅读课本 188-192 页,思考并完成以下问题 1., 的终边与 的终边有怎样的对称关系? 2诱导公式二、三、四的

    4、内容是什么? 3. 的终边与 的终边有怎样的对称关系? 4.诱导公式五、六的内容是什么? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。 三、新知探究三、新知探究 1.公式一::终边相同的角 2.公式二:终边关于 X 轴对称的角 3.公式三:终边关于 Y 轴对称的角 , , , 4.公式四:任意与的终边都是关于原点中心对称的终边关于原点对称的角 sin(1800+ ) = sin, cos(1800+ ) = cos, , 5.公式五: 终边关于直线 yx 对称的角的诱导公式(公式五): sin)360sin( ksin)2sin( kcos)360cos( kcos)2

    5、cos( ktan)360tan( ktan)2tan( k-sinsin( )coscos( )tantan( )sin180sin()sinsin( )-cos180cos()-coscos( )tan180tan()tantan( )180osin= sin ( + )cos= cos ( + )tan=tano(180 + )tan=tan ( + )sin(900 ) = sin( 2 ) = cos; ccos(900 ) = cos( 2 ) = sin. 6、公式六:2 型诱导公式(公式六): sin(900+ ) = sin( 2+ ) = cos; ccos(900+ )

    6、= cos( 2+ ) = sin. 【说明说明】:公式中的指任意角;在角度制和弧度制下,公式都成立; 记忆方法: “奇变偶不变,符号看象限”; 【方法小结方法小结】:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是: 化负角的三角函数为正角的三角函数; 化为0,2内的三角函数; 化为锐角的三角函数。 可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值)。 四、典例分析、举一反三四、典例分析、举一反三 题型一题型一 给角求值给角求值 例例 1 求下列各三角函数式的值: (1)sin(660 );(2)cos 274;(3)2cos 660 sin 630 ; (

    7、4)tan 376 sin53. 【答案】(1) 32;(2) 22;(3)0;(4) 12. 【解析】 (1)因为660 2 360 60 , 所以 sin(660 )sin 60 32. (2)因为274634,所以 cos 274cos 3422. (3)原式2cos(720 60 )sin(720 90 ) 2cos 60 sin 90 21210. (4)tan 376 sin53 tan66 sin23 tan 6 sin 3333212. 解题技巧:(利用诱导公式求任意角的三角函数值的步骤) 利用诱导公式求任意角的三角函数值的步骤: 跟踪训练一跟踪训练一 1求下列各三角函数式的值

    8、: (1)sin 1 320 ;(2)cos316;(3)tan(945 ) 【答案】(1) 32;(2) 32;(3)-1 【解析】 (1)sin 1 320 sin(4 360 120 ) sin(120 )sin(180 60 ) sin 60 32. (2)cos316cos656cos6 cos632. (3)tan(945 )tan 945 tan(225 2 360 )tan 225 tan(180 45 )tan 45 1. 题型二题型二 化简、求值化简、求值 例例 2 化简sin(2 )cos( +)cos(2+)cos(112)cos( )sin(3 )sin( )sin(

    9、92+). 【答案】见解析. 【解析】原式=sin(cos)(sin)(sin)cossinsincos= sincos= tan 解题技巧:(化简求值的方法) 用诱导公式化简求值的方法: 1.对于三角函数式的化简求值问题,一般遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行切化弦,以保证三角函数名最少. 2.对于 k 和2 这两套诱导公式,切记运用前一套公式不变名,而后一套公式必须变名.即“奇变偶不变,符号看象限”. 跟踪训练二跟踪训练二 1.化简:cos(-2)sin(52+)sin(-)cos(2-). 2已知 cos2 13,求sin2 cos2cos错误错误! !

    10、的值 【答案】1.见解析;2. 23. 【解析】 1.原式=cos(2-)sin(2+) sin cos =sincos sin cos =sin2. 2. 原式cos sin cos sin sin sin sin sin 2sin . 又 cos2 13, 所以sin 13. 所以原式2sin 23. 题型三题型三 给值求值给值求值 例例 3 已知sin(530 ) =15,且 2700 900,求 sin(370+ )的值. 【答案】265. 【解析】因为2700 900,所以1430 530 3230, 又因为sin(530 ) =15, 所以530 在第二象限. 所以cos(530

    11、) = 265 易知(530 ) + (370+ ) = 900, 所以sin(370+ ) = sin900 (530 ) = cos(530 ) = 265 解题技巧:(给值求值解题技巧) 1给值求值型问题,若已知条件或待求式较复杂,有必要根据诱导公式化到最简,再确定相关的值 2巧用相关角的关系会简化解题过程观察所求角与已知角是否具有互余、互补等特殊关系.在转化过程中可以由已知到未知,也可以由未知索已知.常见的互余关系有3,6;3, 6;4,4 等常见的互补关系有3,23;4,34 等 跟踪训练三跟踪训练三 1. 已知 cos(2 3- ) =33,求 cos( 3+ ),sin( - 6

    12、),cos(4 3+ )的值. 【答案】cos( 3+ )=-33 sin( - 6) =33 cos(4 3+ ) =33. 【解析】cos( 3+ )=cos*-(2 3- )+ =-cos(2 3- )=-33. sin( - 6)=sin* 2-(2 3- )+ =cos(2 3- ) =33. cos(4 3+ )=cos*2-(2 3- )+ =cos(2 3- ) =33. 五、课堂小结五、课堂小结 让学生总结本节课所学主要知识及解题技巧 六、板书设计六、板书设计 七、 作业七、 作业 课本 194 页习题 5.3. 诱导公式沟通了任意角三角函数值与锐角三角函数值以及终边有特殊位置关系的角的三角函数值之间的联系在求任意角的三角函数值,解决有关的三角变换等方面有重要的作用,特别是诱导公式中的角可以是任意角,即,它在终边具有某种对称性的角的三角函数变换中,应用广泛,如后续课中,画余弦曲线就是利用诱导公式把正弦曲线向左平移 2个长度单位而得到的 5.5.3 3 诱导公式诱导公式 公式一 例 1 例 2 例 3 公式二 公式三 公式四 公式五 公式六 总结(奇变偶不变吧,符号看象限)


    注意事项

    本文(5.3诱导公式 教学设计2)为本站会员(N***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开