欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    山东省临沂市2019-2020学年高一上期末数学试题(含答案解析)

    • 资源ID:206808       资源大小:941.17KB        全文页数:23页
    • 资源格式: DOCX        下载积分:30积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要30积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    山东省临沂市2019-2020学年高一上期末数学试题(含答案解析)

    1、山东省临沂市2019-2020学年高一上学期期末数学试题一、单项选择题1.设全集,则如图阴影部分表示的集合为( )A. B. C. D. 2.命题:,则该命题的否定为( )A. ,B. ,C. ,D. ,3.若,则有( )A B. C. D. 4.设, 则 “”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件5.下列四个函数中,以为最小正周期,且在区间上单调递减的是( )A. B. C. D. 6.是定义在上的偶函数,且,则下列各式一定成立的是( )A. B. C. D. 7.若为第四象限角,则可化简为( )A. B. C. D. 8.用函数表

    2、示函数和中的较大者,记为:若,则的大致图象为( )A. B. C. D. 二、多项选择题9.对于,则为第二象限角的充要条件为( )A. B. C. D. 10.如图,某池塘里浮萍面积(单位:)与时间(单位:月)的关系为关于下列说法正确的是( )A. 浮萍每月的增长率为B. 浮萍每月增加的面积都相等C. 第个月时,浮萍面积不超过D. 若浮萍蔓延到、所经过的时间分别是、,则11.下列命题中正确的是( )A. 函数在区间上有且只有个零点B. 若函数,则C. 如果函数在上单调递增,那么它在上单调递减D. 若函数的图象关于点对称,则函数为奇函数12.若函数在区间上有个零点,则可能取值为( )A B. C

    3、. D. 三、填空题13._14.已知,则的最小值是_.15.已知函数的图象过原点,且无限接近直线但又不与该直线相交,则_16.已知相互啮合的两个齿轮,大轮有齿,小轮有齿当小轮转动两周时,大轮转动的角为_;如果小轮的转速为转/分,大轮的半径为,则大轮周上一点每秒转过的弧长为_四、解答题17.已知.(1)求值;(2)求的值18.已知是定义在上的奇函数,当时,(1)求当时的解析式;(2)求不等式的解集19.已知函数的最小正周期为,且(1)求的解析式;(2)求在区间上的最大值和最小值20.某地某路无人驾驶公交车发车时间间隔(单位:分钟)满足,经测算,该路无人驾驶公交车载客量与发车时间间隔满足:,其中

    4、(1)求,并说明的实际意义;(2)若该路公交车每分钟的净收益(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益21.已知是偶函数(1)求的值;(2)若函数的图象与直线有公共点,求a的取值范围22.某地区上年度电价为元/(),年用电量为本年度该地政府实行惠民政策,要求电力部门让利给用户,将电价下调到元/()至元/()之间,而用户的期望电价为元/()经测算,下调电价后新增用电量和实际电价与用户的期望电价的差成反比(比例系数为)该地区的电力成本价为元/()(1)写出本年度电价下调后电力部门的收益(单位:元)关于实际电价(单位:元/()的函数解析式;(收益实际用电量

    5、(实际电价成本价)(2)设,当电价最低定为多少时,可保证电力部门的收益比上年至多减少?山东省临沂市2019-2020学年高一上学期期末数学试题一、单项选择题1.设全集,则如图阴影部分表示的集合为( )A. B. C. D. 【答案】D【解析】【分析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【详解】,.图中阴影部分所表示的集合为且.故选:D.【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.2.命题:,则该命题的否定为( )A. ,B. ,C. ,D. ,【答案】B【解析】【

    6、分析】根据特称命题的否定可得出结论.【详解】由特称命题的否定可知,原命题的否定为:,.故选:B.【点睛】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题.3.若,则有( )A. B. C. D. 【答案】A【解析】【分析】利用指数函数和对数函数的单调性比较、三个数与、的大小关系,从而可得出这三个数的大小关系.【详解】指数函数为增函数,则;对数函数为增函数,则,即;对数函数为增函数,则.因此,.故选:A.【点睛】本题考查指数式与对数式的大小比较,一般利用指数函数和对数函数的单调性得出各数与中间值、的大小关系,考查推理能力,属于基础题.4.设, 则 “”

    7、是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【详解】由一定可得出;但反过来,由不一定得出,如,故选A.【考点定位】本小题主要考查充分必要条件、不等式的性质等基础知识,熟练掌握这两部分的基础知识是解答好本类题目的关键.5.下列四个函数中,以为最小正周期,且在区间上单调递减的是( )A. B. C. D. 【答案】C【解析】【分析】逐个分析各选项中函数的最小正周期以及各函数在区间上的单调性,即可得出结论.【详解】对于A选项,函数的最小正周期为,且该函数在区间上单调递减;对于B选项,函数的最小正周期为,当时,则该函数在区间上不单

    8、调;对于C选项,函数的最小正周期为,当时,则该函数在区间上单调递减;对于D选项,函数的最小正周期为,且该函数在区间上单调递增.故选:C.【点睛】本题考查三角函数周期和单调性的判断,熟悉正弦、余弦和正切函数的基本性质是判断的关键,考查推理能力,属于基础题.6.是定义在上的偶函数,且,则下列各式一定成立的是( )A. B. C. D. 【答案】B【解析】【分析】利用偶函数的性质和对各选项中的不等式逐项判断,可得出合适的选项.【详解】由于函数是定义在上的偶函数,且.对于A选项,与的大小无法判断;对于B选项,该不等式成立;对于C选项,与的大小无法判断;对于D选项,与的大小无法判断.故选:B.【点睛】本

    9、题考查利用偶函数的性质判断不等式是否成立,考查推理能力,属于基础题.7.若为第四象限角,则可化简为( )A. B. C. D. 【答案】D【解析】【分析】利用同角三角函数的平方关系化简即可.【详解】为第四象限角,则,且,因此,.故选:D.【点睛】本题考查利用同角三角函数的平方关系化简,在去绝对值时,要考查代数式的符号,考查计算能力,属于中等题.8.用函数表示函数和中的较大者,记为:若,则的大致图象为( )A. B. C. D. 【答案】A【解析】【分析】在同一直角坐标系中作出两个函数和的图象,结合函数的定义得出该函数的图象.【详解】在同一直角坐标系中作出两个函数和的图象,如下图所示:由图象可知

    10、,因此,函数的图象为A选项中的图象.故选:A.【点睛】本题考查函数图象的识别,理解函数的定义是关键,考查分析问题和解决问题的能力,属于中等题.二、多项选择题9.对于,则为第二象限角的充要条件为( )A. B. C. D. 【答案】BC【解析】【分析】根据为第二象限角判断出、的符号,从而可得出为第二象限角的充要条件.【详解】若为第二象限角,则,.所以,为第二象限角或或.故选:BC.【点睛】本题考查三角函数值的符号与象限角之间的关系,考查分析问题和解决问题的能力,属于基础题.10.如图,某池塘里浮萍的面积(单位:)与时间(单位:月)的关系为关于下列说法正确的是( )A. 浮萍每月的增长率为B. 浮

    11、萍每月增加的面积都相等C. 第个月时,浮萍面积不超过D. 若浮萍蔓延到、所经过的时间分别是、,则【答案】AD【解析】【分析】将点的坐标代入函数的解析式,求出底数的值,然后利用指数函数的基本性质以及指数运算逐个分析各选项的正误,可得出结论.【详解】将点的坐标代入函数的解析式,得,函数的解析式为.对于A选项,由可得浮萍每月增长率为,A选项正确;对于B选项,浮萍第个月增加的面积为,第个月增加的面积为,B选项错误;对于C选项,第个月时,浮萍的面积为,C选项错误;对于D选项,由题意可得,即,所以,D选项正确.故选:AD.【点睛】本题考查指数函数基本性质应用以及指数幂的运算,解题的关键就是求出指数函数的解

    12、析式,考查分析问题和解决问题的能力,属于中等题.11.下列命题中正确的是( )A. 函数区间上有且只有个零点B. 若函数,则C. 如果函数在上单调递增,那么它在上单调递减D. 若函数的图象关于点对称,则函数为奇函数【答案】ABD【解析】【分析】分析函数在区间上的单调性,结合零点存在定理可判断A选项的正误;利用作差法可判断B选项的正误;利用奇函数与单调性之间的关系可判断出C选项的正误;利用函数奇偶性的定义可判断D选项的正误.【详解】对于A选项,函数在区间上减函数,函数在区间上为增函数,所以,函数在区间上为减函数,所以,函数在区间上有且只有个零点,A选项正确;对于B选项,B选项正确;对于C选项,令

    13、,定义域为,关于原点对称,且,所以,函数为奇函数,由于该函数在区间为增函数,则该函数在区间上也为增函数,C选项错误;对于D选项,由于函数的图象关于点对称,则,令,定义域为,且,即,所以,函数为奇函数,D选项正确.故选:ABD.【点睛】本题考查命题真假的判断,涉及函数的单调性、对称性、零点存在定理的应用,考查分析问题和解决问题的能力,属于中等题.12.若函数在区间上有个零点,则的可能取值为( )A. B. C. D. 【答案】BD【解析】【分析】令,可得,作出函数与在区间上的图象,可知两个函数在区间上的图象有两个交点,进而求出实数的取值范围,从而可得出合适的选项.【详解】令,可得, 可知两个函数

    14、在区间上的图象有两个交点,作出函数与在区间上的图象,如下图所示:则或,解得或.故选:BD.【点睛】本题考查利用三角函数的零点个数求参数,一般转化为两个函数的交点个数问题,考查数形结合思想的应用,属于中等题.三、填空题13._【答案】【解析】【分析】利用指数的运算性质和对数的换底公式可计算出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数与对数的混合运算,涉及指数的运算性质和换底公式的应用,考查计算能力,属于基础题.14.已知,则的最小值是_.【答案】【解析】由得:,所以,当且仅当时,取等号,故填.15.已知函数的图象过原点,且无限接近直线但又不与该直线相交,则_【答案】【解析】【

    15、分析】由函数的图象无限接近直线但又不与该直线相交可得出,再将原点坐标代入该函数的解析式可求出的值,由此可计算出的值.【详解】由于函数的图象无限接近直线但又不与该直线相交,则,又函数的图象过原点,则,可得,因此,.故答案为:.【点睛】本题考查利用指数型函数的基本性质求参数,考查计算能力,属于基础题.16.已知相互啮合的两个齿轮,大轮有齿,小轮有齿当小轮转动两周时,大轮转动的角为_;如果小轮的转速为转/分,大轮的半径为,则大轮周上一点每秒转过的弧长为_【答案】 (1). (2). 【解析】【分析】可设大齿轮和小齿轮旋转的角速度分别为、,根据两齿轮转动时转过的齿轮数相等可求出的值,进而可求出结果.【

    16、详解】设大齿轮和小齿轮旋转的角速度分别为、,在转动时,两齿轮转过的齿轮数相等,当小轮转动两周时,转过的齿轮数为,则大齿轮转动的角为.由题意可知,(转/秒),所以,大轮周上一点每秒转过的弧长为.故答案为:;.【点睛】本题考查扇形圆心角与弧长的计算,解题时要明确两齿轮旋转时转过的齿轮数相等,考查分析问题和解决问题的能力,属于中等题.四、解答题17.已知.(1)求的值;(2)求的值【答案】(1);(2)【解析】【分析】(1)由等式可求出与的等量关系,从而可求出的值;(2)利用诱导公式将所求代数式化简,然后在所求代数式上除以转化为正、余弦齐次分式,利用弦化切的思想可计算出所求代数式的值.【详解】(1)

    17、,因此,;(2).【点睛】本题考查三角函数求值,涉及弦化切思想以及诱导公式的应用,考查计算能力,属于基础题.18.已知是定义在上的奇函数,当时,(1)求当时的解析式;(2)求不等式的解集【答案】(1);(2)【解析】【分析】(1)设,可得出,求出的表达式,再利用奇函数的性质可得出的表达式;(2)分、三种情况解不等式,进而可得出该不等式的解集.【详解】(1)当时,当时,又是上的奇函数,即时,;(2)当时,不等式可化为,显然成立;当时,是奇函数,成立;当时,不等式可化为,得综上可知,不等式的解集为【点睛】本题考查利用函数奇偶性求函数解析式,同时也考查了分段函数不等式的求解,涉及指数函数单调性的应用

    18、,考查计算能力,属于中等题.19.已知函数的最小正周期为,且(1)求的解析式;(2)求在区间上的最大值和最小值【答案】(1);(2)最大值为,最小值为【解析】【分析】(1)由函数的最小正周期可求出的值,再由结合的取值范围求出的值,由此可得出函数的解析式;(2)由计算出的取值范围,再利用正弦函数的基本性质可得出函数的最大值和最小值.【详解】(1)的最小正周期,则,由,得,即,又,故;(2),在区间上最大值为,最小值为【点睛】本题考查利用正弦型三角函数的基本性质求函数解析式,同时也考查了正弦型函数在区间上最值的求解,解题时要充分利用正弦函数的基本性质求解,考查计算能力,属于中等题.20.某地某路无

    19、人驾驶公交车发车时间间隔(单位:分钟)满足,经测算,该路无人驾驶公交车载客量与发车时间间隔满足:,其中(1)求,并说明的实际意义;(2)若该路公交车每分钟的净收益(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益【答案】(1),发车时间间隔为分钟时,载客量为;(2)当发车时间间隔为分钟时,该路公交车每分钟的净收益最大,最大净收益为元【解析】【分析】(1)将代入函数的解析式,可计算出,结合题意说明的实际意义;(2)求出函数的解析式,分别求出该函数在区间和上的最大值,比较大小后可得出结论.【详解】(1),实际意义为:发车时间间隔为分钟时,载客量为;(2),当时,

    20、任取,则,所以,所以,函数在区间上单调递增,同理可证该函数在区间上单调递减,所以,当时,取得最大值;当时,该函数在区间上单调递减,则当时,取得最大值综上,当发车时间间隔为分钟时,该路公交车每分钟的净收益最大,最大净收益为元【点睛】本题考查分段函数模型的应用,考查分段函数最值的计算与实际应用,考查分析问题和解决问题的能力,属于中等题.21.已知是偶函数(1)求的值;(2)若函数的图象与直线有公共点,求a的取值范围【答案】(1);(2)【解析】【分析】(1)由偶函数的定义结合对数的运算性质可求出实数的值;(2)利用参变量分离法得出关于的方程有解,然后利用指数函数和对数的函数的基本性质求出的取值范围

    21、,即可得出实数的取值范围.【详解】(1)是偶函数,化简得,即,即对任意的都成立,;(2)由题意知,方程有解,亦即,即有解,有解,由,得,故,即的取值范围是【点睛】本题考查利用函数的奇偶性求参数,同时也考查了利用函数的零点个数求参数,涉及对数运算性质的应用,灵活利用参变量分离法能简化计算,考查运算求解能力,属于中等题.22.某地区上年度电价为元/(),年用电量为本年度该地政府实行惠民政策,要求电力部门让利给用户,将电价下调到元/()至元/()之间,而用户的期望电价为元/()经测算,下调电价后新增用电量和实际电价与用户的期望电价的差成反比(比例系数为)该地区的电力成本价为元/()(1)写出本年度电

    22、价下调后电力部门的收益(单位:元)关于实际电价(单位:元/()的函数解析式;(收益实际用电量(实际电价成本价)(2)设,当电价最低定为多少时,可保证电力部门的收益比上年至多减少?【答案】(1),;(2)当电价最低定为元/()时,可保证电力部门的收益比上年至多减少【解析】【分析】(1)设下调电价后新增用电量为,可得出,进而求出本年度的用电量,再结合收益的计算方法可得出收益关于实际电价的函数解析式;(2)根据题意得出,解此不等式组,即可得出结论.【详解】(1)设下调电价后新增用电量为,因为下调电价后新增用电量和实际电价与用户期望电价的差成反比(比例系数为),则,所以本年度的用电量为,所以本年度电力部门的收益关于实际电价的函数解析式为:,;(2)依题意有:,整理得:,解得:,所以当电价最低定为元/()时,可保证电力部门的收益比上年至多减少【点睛】本题考查函数模型的实际应用,根据题意求出函数模型解析式是解题的关键,考查分析问题和解决问题的能力,属于中等题.


    注意事项

    本文(山东省临沂市2019-2020学年高一上期末数学试题(含答案解析))为本站会员(N***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开