欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2022年高三数学小题压轴题专练7:基本不等式(含答案解析)

    • 资源ID:208223       资源大小:1.49MB        全文页数:19页
    • 资源格式: DOCX        下载积分:100积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要100积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高三数学小题压轴题专练7:基本不等式(含答案解析)

    1、小题压轴题专练7基本不等式1、 单选题1若,且,则的最小值为A2BCD解:(法一)可变形为,所以,当且仅当即,时取等号,(法二)原式可得,则,当且仅当,即时取“”故选:2已知,则的最大值为A1BCD2解:,则,令,则,令,即,可得,由,当且仅当,时上式取得等号,可得,则的最大值为,故选:3若正实数、满足,则的最小值是ABCD解:设,则,即,且则,当且仅当时,即,时,等号成立,故选:4设,为正数,且,则的最小值为ABCD解:,即,当且仅当,即时等号成立,当时,取得最小值故选:5对于,当非零实数,满足,且使最大时,的最小值为ABCD2解:,由柯西不等式得,故当最大时,有,时,取得最小值为故选:6已

    2、知,则的最小值为A2B4C6D16解:令,则原式当且仅当时取等号故选:7已知直线的方程为,点在上位于第一象限内的点,则的最小值为ABCD解:直线的方程为,点在上位于第一象限内的点,可得,可得,则,当且仅当时,即,上式取得最小值,故选:8已知,则的最小值是ABCD解:由,得,解得且,当时,当且仅当即时取等号;当时,当且仅当即时取等号综上可得,最小值故选:9已知正实数,满足,则当取得最大值时,的最大值为A3BC1D0解:由,可得,当且仅当时,即当时,等号成立,此时,所以,当且仅当时,等号成立,所以,的最大值为1故选:10若,则的最小值为ABCD7解:由,可得,得,由于,则,所以,当且仅当时,即当时

    3、,等号成立,因此,的最小值为7,故选:11已知,且,则的最小值为ABCD解法一:,且,(a),(a)当且仅当时取等号,故的最小值为故选:解法二:,且,(a),(a),令(a),得,(a)单调递增,令(a),得,(a)单调递减,当且仅当时函数(a)取得极小值即最小值,故选:12已知,则的最小值为AB9CD10解:根据题意,则,变形可得:,又由,则有:,设,又由,则,则有,解可得或,又由,则,则的最小值为9;故选:13已知,若则当取得最小值时,A2B4C6D8解:,若则,解得则,令,解得,可得,时,取得最小值时,故选:14已知,不等式对于一切实数恒成立,又存在,使成立,则的最小值为ABCD解:由题

    4、意,不等式对于一切实数恒成立,可得,即;存在,使成立,则,即,消去,即当且仅当取等号故选:15设,则的最小值是A4B5CD8解:,当且仅当,时等号成立,故选:16已知实数,满足,则的最大值是AB2CD3解:实数,满足,令,则,其最大值是,故选:2、 多选题17在中,三边长分别为,且,则下列结论正确的是ABCD解:对于,即,也就是,中,则成立,故正确;对于,当时,不等式取“”,此时,即,得,故正确;对于,故正确;对于,边长为1,2,2的三角形,满足,当,故错误故选:18已知,且,则的值不可能是A7B8C9D10解:因为,且,所以因为,所以,所以,因为,综上,所以的值不可能是7,8,10故选:19

    5、已知,若,且,则下列结论正确的是ABC的最大值为1D的最小值为解:由,可得:,即由,得,化为:,代入,即即,化为:,解得的最小值为,同理可得的最大值为1,故选项正确,错误,故选:20已知,且,那么下列不等式中,恒成立的有ABCD解:对于,且,当且仅当时,等号成立,即选项正确;对于,令,则,在,上单调递减,即选项错误;对于,当且仅当,即时,等号成立,即选项错误;对于,即选项正确故选:3、 填空题21已知,且,则的最大值为,最小值为解:,且,即且,当且仅当时取“ “,当且仅当时取“ “,即,解得:,当且仅当时取“ “,又,当或时取“ “,解得:,当且仅当或时取“ “,故答案为:,22设、是三个正实

    6、数,且,则的最大值为3解:,解法一:设,则,;,当且仅当时成立;的最大值为3解法二:由,得,;设,则,所以,当且仅当时取等号,即的最大值为3故答案为:323若,则的最小值为1;最大值为解:若,则,有基本不等式,(当且仅当,时“”成立),得,又由,得,令,则,令,则,则,令,得或(舍去),当,时,当,函数,在区间当,上单调递增,在区间当,上单调递减,当时,有最大值,最大值是:,又因为,当时,当时,所以,的最小值为:1故答案为:1;24设实数,满足:,则的取值范围为,解:由,可得,由,可得,即有,则,当且仅当取得最小值1;设(a),可得(a)的对称轴为,而,(a)在递增,当时,可得取得最大值;当,且时,由(1),则取得最大值,由,可得时,(b)取得最大值0,则(a),所以,综上可得,的取值范围是,故答案为:,25已知,则的最大值是解:,则,可令,可得,则,由在递增,可得,可得,当且仅当时,上式取得等号,则的最大值是,故答案为:26已知、为正实数,则代数式的最小值是解:令,则,所以代数式当且仅当,即时,等号成立故答案为:27已知实数,满足且,若,则的最小值是解:根据题意,则,又由,则,当且仅当时等号成立,即的最小值为;故答案为:


    注意事项

    本文(2022年高三数学小题压轴题专练7:基本不等式(含答案解析))为本站会员(狼****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开