欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2021届河南省洛阳市高考第二次考试数学试卷(理科)含答案解析

    • 资源ID:208830       资源大小:797.42KB        全文页数:19页
    • 资源格式: DOCX        下载积分:100积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要100积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021届河南省洛阳市高考第二次考试数学试卷(理科)含答案解析

    1、2021 年河南省洛阳市高考数学第二次考试试卷(理科)年河南省洛阳市高考数学第二次考试试卷(理科) 一、选择题(共一、选择题(共 12 小题)小题). 1已知集合 Mx|4x2,Nx|0,则 MN( ) Ax|4x3 Bx|4x2 Cx|2x2 Dx|2x3 2若复数 z 满足(3+4i)z|43i|,则 z 的虚部为( ) A B4 C D4 3已知平面 ,直线 m,n 满足 m,n,则“m”是“mn”的( ) A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件 4设 x,y 满足,则(x+1)2+y2的取值范围是( ) A0,10 B1,10 C1,17 D0,17

    2、 5已知函数 f(x)是定义在 R 上的偶函数,当 x0 时,f(x)lnx+x,则 af(2),bf(log29),cf()的大小关系为( ) Aabc Bacb Cbca Dbac 6(xy)8的展开式中,x2y6项的系数是( ) A28 B28 C56 D56 7 已知双曲线 C:的焦点 F 到渐近线的距离与顶点 A 到渐近线的距离之比为 3:1,则双曲线 C 的渐近线方程为( ) A B C D 8已知函数 f(x)sinx+cosx(0)的最小正周期为 ,则该函数的图象( ) A关于点(,0)对称 B关于直线 x对称 C关于点(,0)对称 D关于直线 x对称 9已知点 A 是抛物线

    3、C:x22py(p0)上一点,O 为坐标原点,若以点 M(0,8)为圆心,|OA|的长为半径的圆交抛物线 C 于 A,B 两点,且ABO 为等边三角形,则 p 的值是( ) A B2 C6 D 10易系辞上有“河出图,洛出书“之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中如图,白圈为阳数,黑点为阴数若从这 10 个数中任取 3 个数,则这 3 个数中至少有 2 个阳数且能构成等差数列的概率为( ) A B C D 11四棱锥 PABCD 的三视图如图所示,四棱锥 PABCD 的五个顶点都在一个球面上,E、F 分别是棱AB

    4、、CD 的中点,直线 EF 被球面所截得的线段长为,则该球表面积为( ) A12 B24 C36 D48 12已知ABC 的三边分别为 a,b,c,若满足 a2+b2+2c28,则ABC 面积的最大值为( ) A B C D 二、填空题(每题二、填空题(每题 5 分,满分分,满分 20 分,将答案填在答题卡上)分,将答案填在答题卡上) 13函数 f(x)cos2x2cosx 的最大值为 14若非零向量 f(x)满足| | |,且,则 与 的夹角为 15若曲线 ylnx 在点(1,0)的切线与曲线 g(x)x2+mx+也相切,则 m 16在正方体 ABCDA1B1C1D1中,M、N、P、Q 分别

    5、是 AB、AA1、C1D1、CC1的中点,给出以下四个结论:AC1MN; AC1平面 MNPQ; AC1与 PM 相交; NC1与 PM 异面其中正确结论的序号是 三、解答题(本大题共三、解答题(本大题共 5 小题,共小题,共 70 分解答应写出文字说明、证明过程或演算步骤)分解答应写出文字说明、证明过程或演算步骤) 17已知等差数列an的前 n 项和为 Sn,首项 a11,且 S1,S2,S4成等比数列 (1)求an的通项公式; (2)若数列an是单调数列,数列bn满足 log2bn,记数列anbn的前 n 项和为 Tn,求证:Tn3 18如图,在平面五边形 ABCDE 中,ABCE,且 A

    6、E2,AEC60,CDED,cosEDC,将CDE 沿 CE 折起,使点 D 到 P 的位置,且 AP,得到如图 2 所示的四棱锥 PABCE (1)求证:AP平面 ABCE; (2)求平面 PAB 与平面 PCE 所成锐二面角的大小 19某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量 y(g)与尺寸 x(mm)之间近似满足关系式 ycxb(b, c 为大于 0 的常数) 按照某项指标测定, 当产品质量与尺寸的比在区间 (, )(0.302,0.388)内时为优等品现随机抽取 6 件合格产品,测得数据如下: 尺寸 x(mm) 38 48 58 68 78 88 质量 y(g) 16

    7、.8 18.8 20.7 22.4 24 25.5 质量与尺寸的比 0.442 0.392 0.357 0.329 0.308 0.290 (1)现从抽取的 6 件合格产品中再任选 3 件,记 为取到优等品的件数,试求随机变量 的期望; (2)根据测得数据作了初步处理,得相关统计量的值如表: (lnxilnyi) (lnxi) (lnyi) (lnxi)2 75.3 24.6 18.3 101.4 ()根据所给统计量,求 y 关于 x 的回归方程; ()已知优等品的收益 z(单位:千元)与 x,y 的关系为 z2y0.32x,则当优等品的尺寸 x 为何值时,收益 z 的预报值最大? 附:对于样

    8、本(vi,ui)(i1,2,n),其回归直线 ubv+a 的斜率和截距的最小二乘估计公式分别为: , ,e2.7182 20已知椭圆 C:1(ab0)的离心率为,点 E,F 分别为其下顶点和右焦点,坐标原点为 O,且EOF 的面积为 (1)求椭圆 C 的方程; (2)是否存在直线 l,使得 l 与椭圆 C 相交于 A,B 两点,且点 F 恰为EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由 21已知函数 f(x)+ (1)若 x1 时,f(x),求实数 m 的取值范围; (2)求证:lnk+1n(k+1)(nN*) 选考题:共选考题:共 10 分请考生在第分请考生在第 22、23

    9、 题中任选一题作答如果多做,则按所做的第题计分作答时,用题中任选一题作答如果多做,则按所做的第题计分作答时,用2B 铅笔在答题卡上把所选题目对应的题号后的方框涂黑铅笔在答题卡上把所选题目对应的题号后的方框涂黑选修选修 4-4:极坐标与参数方程:极坐标与参数方程 22 在直角坐标系 xOy 中, 曲线 C1的参数方程为( 为参数) 经过伸缩变换 :后,曲线 C1变为曲线 C2 (1)求曲线 C1和曲线 C2的普通方程; (2)已知点 P 是曲线 C2上的任意一点,曲线 C1与 x 轴和 y 轴正半轴的交点分别为 A,B,试求PAB面积的最大值和此时点 P 的坐标 选修选修 4-5:不等式选讲:不

    10、等式选讲 23已知函数 f(x)|x+2|x+a| (1)当 a1 时,画出 yf(x)的图象; (2)若关于 x 的不等式 f(x)3a 有解,求 a 的取值范围 参考答案参考答案 一、选择题(共一、选择题(共 12 小题)小题). 1已知集合 Mx|4x2,Nx|0,则 MN( ) Ax|4x3 Bx|4x2 Cx|2x2 Dx|2x3 解:Mx|4x2,Nx|0 x|2x3, MNx|4x3, 故选:A 2若复数 z 满足(3+4i)z|43i|,则 z 的虚部为( ) A B4 C D4 解:由(3+4i)z|43i|,得 z, z 的虚部为 故选:C 3已知平面 ,直线 m,n 满足

    11、 m,n,则“m”是“mn”的( ) A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件 解:因为 m,n,当 m 时,m 与 n 不一定平行,即充分性不成立; 当 mn 时,满足线面平行的判定定理,m 成立,即必要性成立; 所以“m”是“mn”的必要不充分条件 故选:B 4设 x,y 满足,则(x+1)2+y2的取值范围是( ) A0,10 B1,10 C1,17 D0,17 解:由约束条件作出可行域如图, 联立,解得 A(3,1), (x+1)2+y2的几何意义为可行域内动点与定点 P(1,0)距离的平方, 由图可知,可行域内动点与定点 P(1,0)距离的最小值且为

    12、 1, 最大值为|PA|, (x+1)2+y2的取值范围是1,17 故选:C 5已知函数 f(x)是定义在 R 上的偶函数,当 x0 时,f(x)lnx+x,则 af(2),bf(log29),cf()的大小关系为( ) Aabc Bacb Cbca Dbac 解:根据题意,函数 f(x)是定义在 R 上的偶函数,则 af(2)f(2)f(), 当 x0 时,f(x)lnx+x,其导数为 f(x)+1,则 f(x)在(0,+)上为增函数, 又由 03log28log29,则 f()f(2)f(log29), 故有 bac, 故选:D 6(xy)8的展开式中,x2y6项的系数是( ) A28 B

    13、28 C56 D56 解:(xy)8的展开式中,通项公式为 Tr+1(1)rx6ryr, 令 r6,可得 x2y6项的系数是256, 故选:C 7 已知双曲线 C:的焦点 F 到渐近线的距离与顶点 A 到渐近线的距离之比为 3:1,则双曲线 C 的渐近线方程为( ) A B C D 解:设顶点 A(a,0)焦点 F(c,0),其中一条渐近线的方程为:bx+ay0, 设 A 到渐近线的距离为 d, 焦点 F 到渐近线的距离为 db, 由题意可得 b:3:1 即3,所以 9a2c2a2+b2,可得 b28a2, 所以渐近线的方程为:yxx, 故选:A 8已知函数 f(x)sinx+cosx(0)的

    14、最小正周期为 ,则该函数的图象( ) A关于点(,0)对称 B关于直线 x对称 C关于点(,0)对称 D关于直线 x对称 解:函数 f(x)sinx+cosxsin(x+)(0)的最小正周期为,2, f(x)sin(2x+) 令 x,求得 f(x)sin0,且 f(x)不是最值,故 A、D 错误; 令 x,求得 f(x),为最大值,故函数 f(x)的图象关于直线 x对称,故 B 正确,C 错误; 故选:B 9已知点 A 是抛物线 C:x22py(p0)上一点,O 为坐标原点,若以点 M(0,8)为圆心,|OA|的长为半径的圆交抛物线 C 于 A,B 两点,且ABO 为等边三角形,则 p 的值是

    15、( ) A B2 C6 D 解:由题意,|MA|OA|,A 的纵坐标为 4, ABO 为等边三角形, A 的横坐标为, 点 A 是抛物线 C:x22py(p0)上一点, , p 故选:D 10易系辞上有“河出图,洛出书“之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中如图,白圈为阳数,黑点为阴数若从这 10 个数中任取 3 个数,则这 3 个数中至少有 2 个阳数且能构成等差数列的概率为( ) A B C D 解:河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中如图, 白圈为阳数,黑点为阴数 若从

    16、这 10 个数中任取 3 个数,基本事件总数 n120, 这 3 个数中至少有 2 个阳数且能构成等差数列包含的基本事件有 10 个,分别为: (1,3,5),(3,5,7),(5,7,9),(1,5,9),(1,2,3),(1,4,7),(3,4,5),(3,6,9),(5,6,7),(7,8,9), 则这 3 个数中至少有 2 个阳数且能构成等差数列的概率为 p 故选:C 11四棱锥 PABCD 的三视图如图所示,四棱锥 PABCD 的五个顶点都在一个球面上,E、F 分别是棱AB、CD 的中点,直线 EF 被球面所截得的线段长为,则该球表面积为( ) A12 B24 C36 D48 解:将

    17、三视图还原为直观图如右图,可得四棱锥 PABCD 的五个顶点位于同一个正方体的顶点处, 且与该正方体内接于同一个球且该正方体的棱长为 a 设外接球的球心为 O,则 O 也是正方体的中心,设 EF 中点为 G,连接 OG,OA,AG 根据题意,直线 EF 被球面所截得的线段长为 2,即正方体面对角线长也是 2, 得 AGa,所以正方体棱长 a2 RtOGA 中,OGa1,AO, 即外接球半径 R,得外接球表面积为 4R212 故选:A 12已知ABC 的三边分别为 a,b,c,若满足 a2+b2+2c28,则ABC 面积的最大值为( ) A B C D 解:由三角形面积公式可得:SabsinC,

    18、 可得:S2a2b2(1cos2C)a2b21()2, a2+b2+2c28, a2+b282c2,可得:a2+b282c22ab,解得:ab4c2,当且仅当 ab 时等号成立, S2a2b21()2 a2b21()2 a2b2 (4c2)2 +c2 (c2)2,当且仅当 ab 时等号成立, 当 c2时,+c2取得最大值,S 的最大值为 故选:B 二、填空题(每题二、填空题(每题 5 分,满分分,满分 20 分,将答案填在答题卡上)分,将答案填在答题卡上) 13函数 f(x)cos2x2cosx 的最大值为 3 解:函数 f(x)cos2x2cosx2cos2x2cosx1, 当 cosx1

    19、时,函数 f(x)取得最大值, , 故答案为:3 14若非零向量 f(x)满足| | |,且,则 与 的夹角为 解:根据条件,; ; ; 与 的夹角为 故答案为: 15若曲线 ylnx 在点(1,0)的切线与曲线 g(x)x2+mx+也相切,则 m 2 或 4 解:ylnx 的导数为 y, 可得曲线 ylnx 在点(1,0)的切线斜率为 1,切线的方程为 yx1, 联立,可得 x2+(2m2)x+90, 由切线与曲线 g(x)x2+mx+也相切, 可得(2m2)2490, 解得 m4 或2 故答案为:2 或 4 16在正方体 ABCDA1B1C1D1中,M、N、P、Q 分别是 AB、AA1、C

    20、1D1、CC1的中点,给出以下四个结论:AC1MN; AC1平面 MNPQ; AC1与 PM 相交; NC1与 PM 异面其中正确结论的序号是 解:在正方体 ABCDA1B1C1D1中,A1DAD1, CD面 AA1D1D,AD1面 AA1D1D, CDAD1, AD1面 A1CD,A1CAD1 M,N 分别是 AA1,A1D1的中点,AD1MN,即 A1CMN,故正确; 由于 M、N、P、Q 分别是 AB、AA1、C1D1、CC1的中点, 则 AC1与 PM 相交,故不正确,正确; N面 ACC1A1,而 M,P,C面 ACC1A1,NC 与 PM 异面,故正确; 故答案为: 三、解答题(本

    21、大题共三、解答题(本大题共 5 小题,共小题,共 70 分解答应写出文字说明、证明过程或演算步骤)分解答应写出文字说明、证明过程或演算步骤) 17已知等差数列an的前 n 项和为 Sn,首项 a11,且 S1,S2,S4成等比数列 (1)求an的通项公式; (2)若数列an是单调数列,数列bn满足 log2bn,记数列anbn的前 n 项和为 Tn,求证:Tn3 【解答】(1)解:设等差数列an的公差为 d, a11,且 S1,S2,S4成等比数列, S22S1S4,即(2+d)24+,即 d22d0,解得:d0 或 2, an1 或 an1+2(n1)2n1,即 an1 或 an2n1; (

    22、2)证明:数列an是单调数列, an2n1,Snn2, 又 log2bnn, bn2n,anbn, Tn+, 又Tn+, 两式相减得:Tn+2(+)+, 整理得:Tn3, Tn3 18如图,在平面五边形 ABCDE 中,ABCE,且 AE2,AEC60,CDED,cosEDC,将CDE 沿 CE 折起,使点 D 到 P 的位置,且 AP,得到如图 2 所示的四棱锥 PABCE (1)求证:AP平面 ABCE; (2)求平面 PAB 与平面 PCE 所成锐二面角的大小 【解答】(1)证明:在CDE 中,因为 CDED,cosEDC, 由余弦定理可得, 连结 AC,因为 AECE2,AEC60,所

    23、以 AC2, 又因为 AP,故在PAE 中,AP2+AE2PE2, 所以 APAE,同理可证 APAC,因为 ACAEA,AE,AC平面 ABCE, 所以 AP平面 ABCE; (2)解:以 A 为坐标原点,AB,AP 所在直线为 x 轴,z 轴建立空间直角坐标系如图所示, 则, 平面 PAB 的一个法向量为, 设平面 PCE 的法向量为, 因为, 所以,即, 令 y1,则 z1,故, 所以, 故平面 PAB 与平面 PCE 所成锐二面角的大小为 45 19某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量 y(g)与尺寸 x(mm)之间近似满足关系式 ycxb(b, c 为大于 0

    24、的常数) 按照某项指标测定, 当产品质量与尺寸的比在区间 (, )(0.302,0.388)内时为优等品现随机抽取 6 件合格产品,测得数据如下: 尺寸 x(mm) 38 48 58 68 78 88 质量 y(g) 16.8 18.8 20.7 22.4 24 25.5 质量与尺寸的比 0.442 0.392 0.357 0.329 0.308 0.290 (1)现从抽取的 6 件合格产品中再任选 3 件,记 为取到优等品的件数,试求随机变量 的期望; (2)根据测得数据作了初步处理,得相关统计量的值如表: (lnxilnyi) (lnxi) (lnyi) (lnxi)2 75.3 24.6

    25、 18.3 101.4 ()根据所给统计量,求 y 关于 x 的回归方程; ()已知优等品的收益 z(单位:千元)与 x,y 的关系为 z2y0.32x,则当优等品的尺寸 x 为何值时,收益 z 的预报值最大? 附:对于样本(vi,ui)(i1,2,n),其回归直线 ubv+a 的斜率和截距的最小二乘估计公式分别为: , ,e2.7182 解:(1)由表可知,抽取的 6 件合格产品中有 3 件优等品, 的所有可能取值为 0,1,2,3, P(0),P(1),P(2),P(3), 随机变量 的期望为 E()0+1+2+3 (2)()ycxb,lnylnc+blnx, (lnxi)24.6,(ln

    26、yi)18.3, (lnxi)4.1,(lnyi)3.05, 0.5, 3.050.54.11, lny1+0.5lnx, 故 y 关于 x 的回归方程为 ex0.5 ()由(i)知, ex0.5, 2 0.32x2ex0.50.32x0.32()2+, 当,即 x72 时, 取得最大值, 故当优等品的尺寸 x 为 72mm 时,收益 z 的预报值最大 20已知椭圆 C:1(ab0)的离心率为,点 E,F 分别为其下顶点和右焦点,坐标原点为 O,且EOF 的面积为 (1)求椭圆 C 的方程; (2)是否存在直线 l,使得 l 与椭圆 C 相交于 A,B 两点,且点 F 恰为EAB 的垂心?若存

    27、在,求直线l 的方程,若不存在,请说明理由 解:(1)由题可知, 解得, 所以椭圆 C 的方程为+1 (2)假设满足条件的直线 l 存在,由 E(0,2),F(,0), 所以 kEF, 因为点 F 为EAB 的垂心, 所以 ABEF, 所以 kAB, 设直线 l 的方程为 yx+t,代入+1, 得 7x26tx+6(t24)0,(*), (6t)2476(t24)96t2+6720,即t, 记 A(x1,y1),B(x2,y2), 则, 由 AFBE,得1, 所以 y1y2+2y1+x1x2x20, 将 y1x1+t,y2x2+t 代入上式, 得 3x1x2(t+2)(x1+x2)+(2t2+

    28、4t)0, 所以 3(t+2)+(2t2+4t)0, 所以 5t2+t180, 解得 t(t2 舍去), 代入(*)满足0, 所以直线 l 的方程为 yx+ 21已知函数 f(x)+ (1)若 x1 时,f(x),求实数 m 的取值范围; (2)求证:lnk+1n(k+1)(nN*) 解:(1)不等式 f(x),即为 m, 记 g(x),故 g(x), 令 h(x)xlnx,则 h(x)1, x1,h(x)0,h(x)在1,+)单调递增, 故 h(x)minh(1)10,故 g(x)0, 故 g(x)在1,+)上单调递增, 故 g(x)ming(1)2,故 m2; (2)由(1)知:f(x)恒

    29、成立, 即 lnx11, 令 xn(n+1),则 lnn(n+1)1, 故 ln(12)1,ln(23)1, ln(34)1,lnn(n+1)1, 累加得:lnk+1n(k+1)n2(1)n2+, 故lnk+1n(k+1)(nN*) 选考题:共选考题:共 10 分请考生在第分请考生在第 22、23 题中任选一题作答如果多做,则按所做的第题计分作答时,用题中任选一题作答如果多做,则按所做的第题计分作答时,用2B 铅笔在答题卡上把所选题目对应的题号后的方框涂黑铅笔在答题卡上把所选题目对应的题号后的方框涂黑选修选修 4-4:极坐标与参数方程:极坐标与参数方程 22 在直角坐标系 xOy 中, 曲线

    30、C1的参数方程为( 为参数) 经过伸缩变换 :后,曲线 C1变为曲线 C2 (1)求曲线 C1和曲线 C2的普通方程; (2)已知点 P 是曲线 C2上的任意一点,曲线 C1与 x 轴和 y 轴正半轴的交点分别为 A,B,试求PAB面积的最大值和此时点 P 的坐标 解:(1)由题设知:曲线 C1的参数方程为, 由2+2得:x2+y24, 经过伸缩变换 :后,曲线 C1变为曲线 C2, 所以, 整理得,即: (2)曲线 C1与 x 轴和 y 轴正半轴的交点分别为 A,B,即 x2+y24 与 x 轴的正半轴的交点坐标为 A(2,0),与 y 轴的正半轴交点的坐标为 B(0,2), 所以直线 AB

    31、 的方程为 x+y20 所以:直线 AB 的斜率为1, 直线 AB 的垂直平分线的斜率为 k1, 点 A 和 B 的中点为(),即(1,1) 所以 l 的方程为 yx, 所以,解得, 故 P(), 点 P()到直线的距离 d, 所以 选修选修 4-5:不等式选讲:不等式选讲 23已知函数 f(x)|x+2|x+a| (1)当 a1 时,画出 yf(x)的图象; (2)若关于 x 的不等式 f(x)3a 有解,求 a 的取值范围 解:(1)a1 时,f(x)|x+2|x+1|, 其图像为: (2)若关于 x 的不等式 f(x)3a 有解,即 f(x)max3a, f(x)|x+2|x+a|x+2xa|2a|, |2a|3a,2a3a 或 2a3a, 故 a或 a1,故 a, 故 a 的取值范围是(,


    注意事项

    本文(2021届河南省洛阳市高考第二次考试数学试卷(理科)含答案解析)为本站会员(狼****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开