1、2022年河北省初中毕业生升学文化课模拟考试数学试卷一、选择题(本大题有16个小题,共42分110小题各3分;11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1下列实数中是无理数的是( )A B3.1415 C0.5 D2数轴上表示数5的点和原点的距离是( )A B5 C D3计算的结果是( )A B C D4根据分式的基本性质,分式可变形为( )A B C D5用科学记数法表示为的形式,则下列说法正确的是( )A,都是负数 B是正数,是负数C,都是正数 D是负数,是正数6下列尺规作图,能确定的是( )A B C D7如图是一个粉笔盒的表面展开图,若字母表示粉笔盒的上
2、盖,表示侧面,则底面在表面展开图中的位置是( ) A B C D8若,互为倒数,则一元二次方程根的情况( )A有两个不相等的实数根 B有两个相等的实数根C没有实数根 D无法确定9如图所示,的两边,均为平面反光镜,在上有一点,从点射出一束光线经上的点反射后,反射光线恰好与平行,则的度数是( )A B C D10阿基米德说:“给我一个支点,我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识杠杆原理,即“阻力阻力臂=动力动力臂”若已知某一杠杆的阻力和阻力臂分别为和,则这一杠杆的动力和动力臂之间的函数图象大致是( )A. B C D11如图,将的对角线向两端延长,分别至点和点,且使,连接,求证
3、:四边形为平行四边形以下是证明过程,其顺序已被打乱四边形为平行四边形;四边形为平行四边形,;连接,交于点;又,即则正确的证明步骤是( )A B C D12把一张正方形纸片如图1、图2对折两次后,再按如图3挖去一个三角形小孔,则展开后图形是( ) 图1 图2 图3A B C D13数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度(如图),点为沙坑底面所在圆的圆心,为其顶点,甲同学直立于沙坑坑沿的圆周所在的平面上,当他位于时,其视线恰好经过沙坑坑沿圆周上一点看到坑底(甲同学的视线起点与点,点三点共线),为了求得圆锥形坑的深度(圆锥的高),该同学列出了如下表达式,其中不正
4、确的是( )A B C D14如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,过点作直线将以的速度向右移动(点始终在直线上),则与直线相切时,时间为( )A B C或 D或15在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是( )A B C D16老师布置的作业中有这么一道题:如图,在中,为的中点,若,则的长不可能是( )A5 B7 C8 D9甲同学认为,这条三边不在同一个三角形中,无法解答,老师给的题目有错误乙同学认为可以从中点出发,构造辅助线,利用全等的知识解决丙同学认为没必要借助全等三角形的知识,只需构造一个特殊四边形,就可以解决关于三
5、位同学的思考过程,你认为正确的是( )A甲 B乙 C丙 D乙和丙二、填空题(本大题有3个小题,17,18题每小题有2个空,每空2分19题3分,共11分)17若,则,的值分别为_、_18为迎接中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖成绩/分919293949596979899100人数1235681012关于成绩的统计量中,与被遮盖的数据无关的是_和_(填“众数”“中位数”或“平均数”)19如图,在边长为的正六边形中,连接,其中点,分别为和上的动点若以,为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为_三、解答题(本大题有
6、7个小题,共67分解答应写出文字说明、证明过程或演算步骤)20(本小题满分8分)已知两个整式,其中系数被污染(1)若是,化简;(2)若时,的值为18说明原题中是几?若再添加一个常数,使的值不为负数,求的最小值21(本小题满分9分)(1)解不等式,并把解集表示在数轴上;(2)解不等式组:22(本小题满分9分)如图,管中放置着三根同样的绳子,(1)小明从这三根绳子中随机选一根,恰好选中绳子的概率是多少?(2)小明先从左端,三个绳头中随机选两个打一个结,再从右端,三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率23(本小题满分9分)已知:如图,在中,弦与相交于点,给出下列信息:;是的
7、直径:(1)请在上述3条信息中选择其中两条作为条件,剩下的一条作为结论你选择的条件是_,结论是_(只要填写序号)判断此命题是否正确,并说明理由;(2)在(1)的情况下,若,求的长度24(本小题满分10分)某景区的门票价格为8元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折,设游客为人,门票费用为元,非节假日门票费用(元)及节假日门票费用(元)与游客(人)之间的函数关系如图所示(1)_,_;(2)直接写出,与之间的函数关系式;(3)导游小王6月10日(非节假日)带旅游团,6月20日(端午节)带旅游团到该景区旅
8、游,两团共计50人,两次共付门票费用3040元,求,两个旅游团各有多少人?25(本小题满分10分)常数平面直角坐标系中,已知抛物线经过,两点,其中为常数(1)求的值,并用含的代数式表示;(2)若抛物线与轴有公共点,求的值;(3)设,是抛物线上的两点,请比较与0的大小,并说明理由26(本小题满分12分)问题背景:如图1,在矩形中,点是边的中点,过点作交于点实验探究:(1)在一次数学活动中小王同学将图1中的绕点按时针方向旋转,如图2所示,得到结论:_;直线与所夹的锐角的度数为_;(2)小王同学继续将绕点按逆时针方向旋转,旋转至如图3所示位置请问探究(1)中的结论是否仍然成立?并说明理由拓展延伸:在
9、以上探究中,当旋转至,三点共线时,则的面积为_ 图1 图2 图3参考答案本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分一、选择题1A 2B 3B 4D 5B 6B 7C 8A 9B 10A 11C 12C 13D 14C 15D 16D二、填空题17 18中位数 众数(注:可以交换顺序)199或10或18(给出任意一个均给分,写全给满分)三、解答题20解:(1)由题意知;(2)设,依题意得,解得;,的值不为负数时,有即,解得,的最小值为21解:(1)去分母,得,移项,得,合并同类项,得,系数化为1,得,将不等式的解集表示在数轴上如图:(2)解不等式,得,解不等式,得,则不等式组的
10、解集为22解:(1)每根绳子被选中是等可能的,则恰好选中绳子的概率是;(2)列表如下:所有等可能的情况有9种(其中能连成一根长绳的打,连不成的打),其中这三根绳子能连接成一根长绳的情况有6种,则23解:(1)条件为,结论为,结论正确,理由如下:如图,连接,是的直径,;故答案为:,(答案不唯一);(2)如图,连接,是的直径,又,又,的长度为24解:(1)由图象上点,得到10人的费用为480元,;由图象上点和,得到20人中后10人费用为640元,;(2)设,函数图象经过点,;当时,设,函数图象经过点,当时,设,函数图象经过点和,;(3)设团有人,则团的人数为,当时,有,解得(不符合题意舍去),当时
11、,有,解得,则答:团有20人,团有30人25解:(1)抛物线经过,两点,;(2)由(1)得,令,得,抛物线与轴有公共点,;(3)由(1)得,是抛物线上的两点,当,即时,;当,即时,;当,即时,26解:(1)如题目中图1,如图2,设与交于点,与交于点,图2绕点按逆时针方向旋转,又,直线与所夹的锐角的度数为,故答案为:,;(2)结论仍然成立,理由如下:如图3,设与交于点,与交于点,图3将绕点按逆时针方向旋转,又,又,直线与所夹的锐角的度数为拓展延伸:如图4,当点在的上方时,过点作于点,图4,点是边的中点,三点共线,由(2)可得,的面积;如图5,当点在的下方时,过点作,交的延长线于点,图5同理可得的面积;故答案为:或