1、 20222022 年湖北省武汉市中考数学押题预测模拟试卷(年湖北省武汉市中考数学押题预测模拟试卷(2 2) 一、选择题一、选择题(本大题共小 10 题,每小题 3 分,共 30 分) 1实数 6 的相反数是( ) A6 B6 C16 D16 2打开电视正在播放广告,这个事件是( ) A确定性事件 B必然事件 C随机事件 D不可能事件 3下列图形中,是中心对称图形但不是轴对称图形的是( ) A B C D 4下列运算正确的是( ) A2a2a22 B(a2)3a5 C(2a3)42a12 D3a3a33 5如图所示几何体,其俯视图大致为( ) A B C D 6在反比例函数 y3x的图象上有三
2、点 A(x1,a),B(x2,b),C(x3,c),若 x1x20 x3,则 a,b,c 的大小关系是( ) Aabc Bcba Ccab Dbac 7甲乙两人分别从相距 90km 的 A,B 两地相向而行,乙比甲先出发。图中的实线分别表示两人离 A 地的距离 s(km)与实践 t(h)的关系,则 a 的值为( ) 正面 A3 B72 C4 D92 8在 4 张完全相同的卡片上分别标上 2,3,4,5 这四个数字,任意抽取两张卡片并将所标数字组成一个两位数,则这个两位数能被 3 整除的概率是( ) A13 B14 C512 D712 9如图,在ABC 中,ACB90,BAC30,点 A,B 在
3、O 上,点 C 在O 内,连接 OC,且OCB135,若O 的半径为 6,则 OC 的长为( ) A333 B232 C231 D332 10请利用画图的方法求 y216x 234x的最小值( ) A35 B32 C6 D4 二、填空题二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 11计算26得结果是 12对某班谭雪每周用在课外阅读上的时间进行调查,随机抽取了 30 多名学生的数据如下表,则这组数据的中位数是 时间/h 10 15 20 25 30 35 人数 2 3 9 8 5 3 13计算13a 269a 的结果是 st12a22790OABCO 14如图,某小型书库拦水
4、坝的横断面是四边形 ABCD,ABDC,测得迎水坡的坡脚30,背水坡的坡度 i1: 2, 坝顶宽度为 4m, 坝高为 6m, 则坝底 AB 的长为 m(结果根据四舍五入法精确到个人,3173) 15抛物线 yax2bx2 与 x 轴的一个交点为(m,0),其中2m1,2ab0,下列结论:抛物线经过点(0,2);a0;点 A(x1,y1),B(x2,y2)在抛物线上,则当 x1x21,y1y2;a14其中正确结论的序号是 16如图,在直角三角形纸片 ABC 中,ACB90,AC3,BC4,点 D 在边 AB 上,以 CD 为折痕将CBD 折叠得到CFD,CF 与边 AB 交于点 E,当 DFAB
5、 时,BD 的长是 三、解答题三、解答题(本大题共 8 小题,共 72 分) 17(8 分)解不等式组322451xxxx,请按下列步骤完成解答 (1)解不等式,得 ; (2)解不等式,得 ; (3)将不等式和的解集在数轴上表示出来 (4)原不等式的解集是 18(8 分)如图,在四边形 ABCD 中,CDAB,B68 ,D110 ,ACBC,EFBC 于点 F,交 AB于点 E (1)求证:ACEF; (2)求CAD 的度数 i=1:2ABCDABCDEF210-1-2-3-4 19(8 分)某校为了提高学生学习国学的积极性,举办了全体学生都参加的“国学知识比赛” ,比赛以国学相关知识为内容制
6、成 100 分试卷,学生的成绩均在 50 分以上,为了解学生对国学的掌握情况,学校抽取了一部人的学生成绩,绘制成不完整的统计图表 请根据图表提供的信息,解答以下问题: (1)本次调查的学生共有 人,a ,B 级所在扇形的圆心角的度数是 ; (2)若该校约有 2000 名学生,请估计成绩超过 80 分的学生人数? 学生成绩频数分布表学生成绩频数分布表 等级等级 成绩成绩 x(分)(分) 频数(人数)频数(人数) A 50 x60 2 B 60 x70 10 C 70 x80 14 D 80 x90 a E 90 x100 8 20(8 分)如图,平行四边形 ABCD 的三个顶点 A,B,C 都在
7、O 上,对角线 BD 经过圆心 O,AD 与O相切于点 A (1)求证:ABAC ; (2)若 BC2,求图中阴影部分的面积 21(8 分)如图,在 55 的网格中,ABC 的顶点均为格点,请仅用无刻度的直尺画图,画图过程请用虚线表示,画图结果用实线表示 (1)在图 1 中 AB 的延长线山画一点 E,使BCEACB;再在 AC 边上画一点 D,使 BDCD; ABCDEFDABCO学生人数扇形统计表 E16%ABC D32% (2)在图 2 中画ABC 的外心 O,再在 AC 上画点 G,使BCGCAB 22(10 分)某经销商销售一种山果,经市场调查:若山果售价为 10 元/千克,每天销售
8、量为 34 千克;若售价每提高 1 元/千克,每天销售量就减少 2 千克。设山果售价为 x 元/千克(x10 且为正整数) (1)若每天销售量为 24 千克,直接写出当天山果的销售单价; (2)政府规定售价不能超过 15 元/千克,设每天销售额为 w 元,求 w 的最大值; (3)政府为了扩大山果的经营市场,决定每天给予经销商补贴 a 元后(a 为正整数),发现只有 4 种不同的售价使当天收入不低于 395 元且不超过 400 元,请直接写出 a 的值(当天收入销售额政府补贴) 23(10 分)在等边ABC 中,P 是射线 BC 上一点 (1)【问题背景】如图 1,点 P 在边 BC 上,D
9、是 AC 上一点,ADPC,连接 AP,BD 交于点 E,求证:ABPBCD; (2)【尝试应用】 如图 2,点 P,Q 分别在边 BC, AC 上,连接 AP,BQ, 若 tanAPB125,AQPCBQ1320,求APBQ的值; (3)【拓展创新】如图 3,点 P 在 BC 的延长线上,APQ60,射线 PQ 交 AC 的延长线于点 Q,若BCPCk,直接写出PQPBAQ的值(用含 k 的式子表示) 24(12 分)抛物线 yx21 与 x 轴交于 A,B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C,P 是第一象限内的抛物线上一点 图1ABCCBA图2图1PABCDEQCBAP
10、图2图3QPCBA (1)求 A,B,C 的坐标; (2)如图 1,AP 与 CB 的延长线交与点 M,若APAM58,求点 P 的坐标; (3)如图 2, 过点 B 作 PA 的垂线交抛物线于另一点 Q, 连接 PQ 交 y 轴于点 N, 设点 P, Q 的横坐标分别为 p,q,求证:CNpq 20222022 年湖北省武汉市中考数学押题预测模拟试卷(年湖北省武汉市中考数学押题预测模拟试卷(2 2) 一、选择题一、选择题(本大题共小 10 题,每小题 3 分,共 30 分) 1实数 6 的相反数是( ) A6 B6 C16 D16 答案:A 2打开电视正在播放广告,这个事件是( ) A确定性
11、事件 B必然事件 C随机事件 D不可能事件 答案:C 3下列图形中,是中心对称图形但不是轴对称图形的是( ) A B C D 答案:B 4下列运算正确的是( ) A2a2a22 B(a2)3a5 C(2a3)42a12 D3a3a33 答案:D 5如图所示几何体,其俯视图大致为( ) PMyxOCBA图1QP图2ABCOxyN A B C D 答案:C 6在反比例函数 y3x的图象上有三点 A(x1,a),B(x2,b),C(x3,c),若 x1x20 x3,则 a,b,c 的大小关系是( ) Aabc Bcba Ccab Dbac 答案:C 7甲乙两人分别从相距 90km 的 A,B 两地相
12、向而行,乙比甲先出发。图中的实线分别表示两人离 A 地的距离 s(km)与实践 t(h)的关系,则 a 的值为( ) A3 B72 C4 D92 答案:B 8在 4 张完全相同的卡片上分别标上 2,3,4,5 这四个数字,任意抽取两张卡片并将所标数字组成一个两位数,则这个两位数能被 3 整除的概率是( ) A13 B14 C512 D712 答案:A 9如图,在ABC 中,ACB90,BAC30,点 A,B 在O 上,点 C 在O 内,连接 OC,且OCB135,若O 的半径为 6,则 OC 的长为( ) 正面st12a22790O A333 B232 C231 D332 答案:A 解析:延长
13、 CA 交O 于点 D,连接 OD,OB,BD, 可证OBD 为等边三角形 OCB135 ,可证 OCBD OC333 选 A 10请利用画图的方法求 y216x 234x的最小值( ) A35 B32 C6 D4 答案:A 【解析】 如图,作 AB3,过点 A 作 ACAB,且 AC4, 作 BDAB,且 BD2 设点 E 在 AB 上,且 AEx,则 yCEDE 当 C,E,D 共线时,y最小35 ABCOABCDO 二、填空题二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 11计算26得结果是 答案:6 12对某班谭雪每周用在课外阅读上的时间进行调查,随机抽取了 30 多
14、名学生的数据如下表,则这组数据的中位数是 时间/h 10 15 20 25 30 35 人数 2 3 9 8 5 3 答案:25 13计算13a 269a 的结果是 答案:13a 14如图,某小型书库拦水坝的横断面是四边形 ABCD,ABDC,测得迎水坡的坡脚30,背水坡的坡度 i1: 2, 坝顶宽度为 4m, 坝高为 6m, 则坝底 AB 的长为 m(结果根据四舍五入法精确到个人,3173) 答案:26 15抛物线 yax2bx2 与 x 轴的一个交点为(m,0),其中2m1,2ab0,下列结论:抛物线经过点(0,2);a0;点 A(x1,y1),B(x2,y2)在抛物线上,则当 x1x21
15、,y1y2;a14其中正确结论的序号是 答案: 【解析】 正确; ABCDEi=1:2ABCD 2m1,2ab0,由图象得 a0,错误 2ab0,对称轴 x2ba1 a0,x1x21 时,y1y2; 当 x2 时,y4a2b20,2ab0,4a4a20,a14,正确 综上所述,正确的结论的序号是 16如图,在直角三角形纸片 ABC 中,ACB90,AC3,BC4,点 D 在边 AB 上,以 CD 为折痕将CBD 折叠得到CFD,CF 与边 AB 交于点 E,当 DFAB 时,BD 的长是 答案:45 解析:过点 C 作 CHAB 于点 H, 在 RtACB 中, AC3,BC4,AB5,CH1
16、25,DH165 由折叠知CDFCDB135 ,HCD45 ,HDHC125, BDBHDH45 三、解答题三、解答题(本大题共 8 小题,共 72 分) 17(8 分)解不等式组322451xxxx,请按下列步骤完成解答 (1)解不等式,得 ; ABCDEFFEDCBAH (2)解不等式,得 ; (3)将不等式和的解集在数轴上表示出来 (4)原不等式的解集是 答案: (1) x2 (2) x2 (3)如下图 (4)2x2 18(8 分)如图,在四边形 ABCD 中,CDAB,B68 ,D110 ,ACBC,EFBC 于点 F,交 AB于点 E (1)求证:ACEF; (2)求CAD 的度数
17、答案: (1) ACBC,EFBC ACB90 ,EFB90 ACBEFB,EFAC (2) ACB90 ,B68 ,CAB22 ABCD,D110 , DAB70 , CAD70 22 48 19(8 分)某校为了提高学生学习国学的积极性,举办了全体学生都参加的“国学知识比赛” ,比赛以国学相关知识为内容制成 100 分试卷,学生的成绩均在 50 分以上,为了解学生对国学的掌握情况,学校抽取了一部人的学生成绩,绘制成不完整的统计图表 请根据图表提供的信息,解答以下问题: 210-1-2-3-4-4-3-2-1012ABCDEF (1)本次调查的学生共有 人,a ,B 级所在扇形的圆心角的度数
18、是 ; (2)若该校约有 2000 名学生,请估计成绩超过 80 分的学生人数? 学生成绩频数分布表学生成绩频数分布表 等级等级 成绩成绩 x(分)(分) 频数(人数)频数(人数) A 50 x60 2 B 60 x70 10 C 70 x80 14 D 80 x90 a E 90 x100 8 答案: (1) 50;16;1050 360 72 (2) 200016850960(人) 20(8 分)如图,平行四边形 ABCD 的三个顶点 A,B,C 都在O 上,对角线 BD 经过圆心 O,AD 与O相切于点 A (1)求证:ABAC ; (2)若 BC2,求图中阴影部分的面积 答案: (1)
19、 连接 AO 并延长交 BC 于点 E 根据题意可得:OEAD ADBC,OEBC ABAC DABCO学生人数扇形统计表 E16%ABC D32% (2) 由(1)得 OEBC,BE12BC12AD1 ADBC,OAOEODOBADBE2 OBOA2OE 在 RtOBE 中,BE3OE1,cosBOEOEOB12 BOE60 ,OB2 33, SOAB122 33 133 S阴AOB4120336049,S阴4933 21(8 分)如图,在 55 的网格中,ABC 的顶点均为格点,请仅用无刻度的直尺画图,画图过程请用虚线表示,画图结果用实线表示 (1)在图 1 中 AB 的延长线山画一点 E
20、,使BCEACB;再在 AC 边上画一点 D,使 BDCD; (2)在图 2 中画ABC 的外心 O,再在 AC 上画点 G,使BCGCAB 答案: (1) 如图所示 DABCEO图1ABCCBA图2 (2) 如图所示 提示:过点 O 作 OMBC 于点 M,则可证CAB12COBBOM 易求 tanBOMBMOM34,再构造 tanCBG34即可 22(10 分)某经销商销售一种山果,经市场调查:若山果售价为 10 元/千克,每天销售量为 34 千克;若售价每提高 1 元/千克,每天销售量就减少 2 千克。设山果售价为 x 元/千克(x10 且为正整数) (1)若每天销售量为 24 千克,直
21、接写出当天山果的销售单价; (2)政府规定售价不能超过 15 元/千克,设每天销售额为 w 元,求 w 的最大值; (3)政府为了扩大山果的经营市场,决定每天给予经销商补贴 a 元后(a 为正整数),发现只有 4 种不同的售价使当天收入不低于 395 元且不超过 400 元,请直接写出 a 的值(当天收入销售额政府补贴) 答案: (1) 根据题意得:342(x10)24,x15 山果当天的销售价单价为 15 元/千克 (2) wx342(x10)2x254x2(x272)27292, 10 x15,且 x 为正整数,a20 当 x13 或 14 时,w最大值364 (3) 由题意得 3952x
22、254xa400, 只有 4 种不同的售价使当天的收入不低于 395 元 由二次函数的对称性可知,x 的取值为 12,13,14,15 ABCDEABCGO 当 x12 或 15 时,2x254x360,当 x13 或 14 时,2x254x364 a 的值为 35 或 36 23(10 分)在等边ABC 中,P 是射线 BC 上一点 (1)【问题背景】如图 1,点 P 在边 BC 上,D 是 AC 上一点,ADPC,连接 AP,BD 交于点 E,求证:ABPBCD; (2)【尝试应用】 如图 2,点 P,Q 分别在边 BC, AC 上,连接 AP,BQ, 若 tanAPB125,AQPCBQ
23、1320,求APBQ的值; (3)【拓展创新】如图 3,点 P 在 BC 的延长线上,APQ60,射线 PQ 交 AC 的延长线于点 Q,若BCPCk,直接写出PQPBAQ的值(用含 k 的式子表示) 答案: (1) 在等边ABC 中,ACBC,ABPBCD60 ADPC,CDBP,ABPBCD (2) 在 AC 上取点 D,使 ADPC,连接 BD,过点 Q 作 QEBD 于点 E 由(1)得BDCAPB,APBBDC DEQ90 ,tanBDQEQDE125, 设 ED6a,则 EQ12a,DQAQPC13a,BQ20a BE22BQEQ16a PABQBDBQ2120aa2120 图1P
24、ABCDEQCBAP图2图3QPCBA (3) 作PAD60 ,射线 AD 交 PQ 的延长线于点 D,交 PB 于点 E,过点 A 作 AHPB 于点 H, PAD 为等边三角形 DB60 , 由(1)得PEDAQP,PEAQ PBAQBE, 设 PC2a,则 BC2ka AHBC,CHBHka, AHka,PH2aka(k2)a PA22PHAH221kka ABEAPQ, PQPBAQPQBEPAAB2212kkaka21kkk 24(12 分)抛物线 yx21 与 x 轴交于 A,B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C,P 是第一象限内的抛物线上一点 (1)求 A,
25、B,C 的坐标; (2)如图 1,AP 与 CB 的延长线交与点 M,若APAM58,求点 P 的坐标; (3)如图 2, 过点 B 作 PA 的垂线交抛物线于另一点 Q, 连接 PQ 交 y 轴于点 N, 设点 P, Q 的横坐标分别为 p,q,求证:CNpq PABCQEDABCPQE HD 答案: (1) A,B,C 三点的坐标分别为(1,0),(1,0),(0,1) (2) 过点 P,M 分别作 PGx 轴于点 G,MHx 轴于点 H, PGHM,AGAHPAAM58, 设点 P 的坐标为(p,p21) A(1,0),设直线 AP 的解析式为 yk(x1) p21k(p1),kp1 y
26、(p1)xp1 B,C 坐标分别为(1,0),(0,1) 直线 BC 的解析式为 yx1 联立111ypxpyx ,解得 x2pp ,121ppp85 P32或12(舍) P 的坐标为(32,54) (3) 过点 P,Q 分别作 x 轴的垂线,垂足分别为 G,H, 设 P 的坐标为(p,p21),Q 的坐标为(q,q21) 直线 PQ 的解析式为 ykxb,p21pkb,q21kqb kPq,bpq1 PMyxOCBA图1QP图2ABCOxyNABCOxyMPGH y(pq)xpq1 N(0,pq1),CNpq PGAQHB90 ,PABQ HBQAPG,PAGBQH PGBHAGHQ A,B,C 三点的坐标分别为(1,0),(1,0),(0,1) (p21)(q21)(p1)(1q),pqpq0 pqpq,CNpq GHNyxOCBAPQ