欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    冀教版九年级数学上册《第28章圆》教案

    • 资源ID:217509       资源大小:2.47MB        全文页数:184页
    • 资源格式: DOCX        下载积分:50积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要50积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    冀教版九年级数学上册《第28章圆》教案

    1、第二十八章 圆1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念.2.认识圆的轴对称性和中心对称性,探索垂径定理,探索并了解弧、弦、圆心角之间的关系,探索并了解圆周角与圆心角及所对弧的关系.3.了解并证明圆周角定理及其推论,知道圆周角的度数等于它所对弧的圆心角度数的一半,直径所对的圆周角是90,90的圆周角所对的弦是直径,圆内接四边形的对角互补.4.知道三角形的外接圆和外心,会用尺规过不在同一直线上的三点作圆和作三角形的外接圆.5.会计算弧长及扇形的面积,会计算圆锥的侧面积.1.积极引导学生从事观察、测量、平移、旋转、推理证明等活动,了解概念,掌握定理及公式.2.通过探究活动中小组

    2、合作交流,培养学生合作意识.3.在探索圆周角和圆心角之间的关系的过程中,让学生形成分类讨论的数学思想和归纳的数学思想.4.让学生经历探究圆及其相关结论的过程,进一步发展学生数学思考和数学推理的能力.5.探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式并理解公式的意义,提高学生计算能力和数学思维.1.通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生运用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、分析以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯.3.进一步培养合情推理能力,

    3、进一步培养综合运用所学知识,分析问题、解决问题的能力.4.进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力,同时对学生进行辩证唯物主义世界观的教育.与三角形、四边形一样,圆也是基本的平面图形,也是“空间与图形”的主要研究对象,是人们生活中常见的图形.学生在前面学习了一些基本的直线型三角形、四边形等的基础上,并在小学的基础上,学生已经积累了大量有关圆的经验,本章是在此基础上,进一步研究一个基本的曲线形圆,对圆的概念和性质进行系统地梳理,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力.在小学学过圆的基础上,进一步学习研究圆的概念和性质,圆的许多性质,比较集中地反映了事物内部量

    4、变与质变、一般与特殊、矛盾的对立统一等关系,把这种针对具体图形的结论和方法推广,能使学生实现由具体到抽象、特殊到一般的认识上的飞跃,提高学生的思维能力,圆锥侧面积的计算还可以培养学生的空间观念,所以圆这一章在初中数学学习中占有重要地位.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中阶段圆锥曲线的学习的基础性工程.【重点】1.垂径定理及其推论的推导及应用.2.圆周角定理及其推论的推导及应用.3.正多边形的有关计算.4.弧长和扇形面积、圆锥的侧面积的相关计算.【难点】1.垂径定理及其推论的推导及应用.2.圆周角定理及其推

    5、论的推导及应用.3.圆锥的侧面展开图的理解.1.圆与现实生活密切联系,在教学中,适当选取贴近学生现实生活中的实例为背景,创设一个有利于学生观察、探索和交流的氛围,教师引导学生通过观察、操作、变换、推理以及合作交流等数学活动,发现和归纳圆的有关性质,较好的展开知识的形成过程.2.重视知识间的联系和综合,要衔接前面“空间与图形”的内容和要求,了解它们与这部分知识的区别和联系,教学时应注意帮助学生多复习有关图形的知识,做到以新带旧,新旧结合.3.在组织教学活动的过程中,要充分发扬民主,为学生提供自主探索的空间,促使学生在课堂上积极动手实践、勤于思考,要使学生从事观察、测量、折叠、推理、归纳等活动,帮

    6、助他们有意识地积累活动经验,获得成功的体验,同时在课堂教学中要关注学生小组之间的合作与交流,鼓励学生以独立思考、合作交流的方式解决问题,并在活动的过程中不断积累数学活动的经验,提高数学推理能力.4.圆是一种特殊的图形,它对于培养学生的数学能力,形成数学思想方法具有重要的价值.要加强数学思想方法的教学,在观察、探究和推理活动中,使学生有意识地归纳数学思想方法,在探究圆周角与圆心角之间的关系及弧长、扇形面积公式的教学时,要渗透分类思想、化归思想及由特殊到一般的数学思想方法.28.1圆的概念及性质1课时28.2过三点的圆1课时28.3圆心角和圆周角3课时28.4垂径定理*1课时28.5弧长和扇形面积

    7、的计算1课时回顾与反思1课时28.1 圆的概念及性质1.理解圆、弦、直径、弧、优弧、劣弧、半圆、等圆、等弧等基本概念.2.认识圆的轴对称性和中心对称性.3.通过对圆的相关概念的理解,能够从图形中识别“弦、直径”“弧、优弧、劣弧”“半圆、等圆、等弧”.4.能应用圆的有关概念解决问题.1.通过感受生活中存在的圆形,提高学生识图能力,体会数学与生活息息相关.2.通过探索圆的概念的过程,学会用猜想归纳的思想解决问题.3.经历抽象和建立圆的概念的过程,探究圆的对称性,使学生积累数学活动经验.1.让学生经历观察、思考、归纳和概括等学习过程,养成既能自主探索,又能合作探究的良好学习习惯.2.引导学生对图形的

    8、观察、发现,激发学生的好奇心和求知欲,建立学习的自信心.【重点】与圆有关的概念.【难点】理解“直径与弦”“半圆与弧”“等弧与长度相等的弧”等概念.【教师准备】多媒体课件.【学生准备】预习教材P146147,圆形纸片.导入一:【课件展示】欣赏图片.导入语在实际生活中,电动自行车的车轮、皮带传动轮、茶几面和管道的横截面等,都给我们一种圆的形象.圆是现实生活中最常见的图形,许多物体具有圆的形象.圆有哪些性质呢?这是这一节我们要学习的内容.导入二:思考并回答:1.小学里学习过圆,你能举出哪些生活中圆的例子?2.为什么车轮都做成圆形?能不能做成正方形和长方形?3.如图所示,A,B表示车轮边缘上两点,点O

    9、表示车轮的轴心,那么A,O之间的距离与B,O之间的距离有什么关系?【师生活动】学生思考后回答,教师适当点评,导出本节课的课题.设计意图通过欣赏图片,让学生感受生活中处处有数学,激发学生学习本章的兴趣,同时让学生体会圆是实际生活中常见的图形,通过小学对圆的初步接触,让学生回忆圆的知识,思考圆的特征,为后面给出圆的定义做准备,从已有的知识体系自然地构建出新知识.过渡语实际生活中存在着大量的圆的图形,认识一个新图形就要知道它的概念,今天我们一起学习圆的有关概念.圆的概念【思考】1.我们怎样在本上画圆形?2.我们想在操场上画个圆形,你有什么办法吗?3.观察我们画圆的过程,圆上的点到到圆心的距离有什么共

    10、同特征?思路一【师生活动】学生回答用圆规在本上画圆形,独立思考怎样在操场画圆后,小组合作交流,共同探究画圆的方法及圆上各点的特征.教师课件展示操场上画圆的方法,共同探究圆上各点的特征.【课件展示】小惠与小亮合作,按下面的方法画圆.首先,小惠把绳子的一端固定在操场上的某一点O处,小亮在绳子的另一端拴上一小段竹签,然后,小亮将绳子拉紧,再绕点O转一圈,竹签划出的痕迹就是圆.【师生活动】通过交流圆上各点的共同特征,教师引导共同归纳圆的有关概念.【课件展示】平面上,到定点的距离等于定长的所有点组成的图形,叫做圆,这个定点叫圆心,这条定长叫做圆的半径.如图所示,它是以点O为圆心,OA的长为半径的圆,记作

    11、“O”,读作“圆O”.线段OA也称为O的半径.思路二【师生活动】教师引导我们平时用圆规画圆,观察小惠和小亮合作是怎样画出圆形的,让学生自主学习教材146-147页,然后学生之间互相交流圆的概念及表示方法.教师对学生的展示作出评价,并课件展示圆的概念.【课件展示】平面上,到定点的距离等于定长的所有点组成的图形,叫做圆,这个定点叫圆心,这条定长叫做圆的半径.如图所示,它是以点O为圆心,OA的长为半径的圆,记作“O”,读作“圆O”.线段OA也称为O的半径.追加思考:1.篮球是圆吗?太阳是圆吗?(强调定义中的同一平面内)2.以3 cm为半径画圆,能画出几个圆?为什么?(无数个,圆心不确定)3.以O为圆

    12、心画圆,能画出几个圆?为什么?(无数个,半径不确定)4.确定一个圆需要哪几个元素?(圆心和半径两个元素)【师生活动】学生思考后小组合作交流,学生回答后教师点评,教师强调:圆心确定圆的位置,半径确定圆的大小,圆心和半径两个元素确定一个圆.设计意图教师引导或自学教材,学生对画圆的过程加深认识,归纳形成概念,让学生经历概念的形成过程,培养自主学习、合作交流的能力.通过追加思考,让学生更深入的理解圆的概念,培养学生严谨的学习态度.共同探究圆的对称性【师生活动】教师引导学生通过折叠、旋转课前准备的圆形纸片,回答下面的问题.1.什么是轴对称图形、中心对称图形?2.圆是轴对称图形吗?如果是,它的对称轴是什么

    13、?你能找到多少条对称轴?3.圆是中心对称图形吗?如果是,它的对称中心是什么?4.圆绕着它的圆心旋转任意角度后和自身重合吗?5.直径是圆的对称轴正确吗?【师生活动】学生思考后小组合作交流,学生回答后教师点评,指出“直径是圆的对称轴”这个结论错误的原因.【课件展示】圆是轴对称图形,过圆心的每一条直线都是它的对称轴.圆也是中心对称图形,圆心是它的对称中心.实际上,圆绕圆心旋转任意角度后都与自身重合.设计意图通过复习旧知识和创设动手操作活动,激发学生的学习兴趣,探索圆的对称性,了解圆的基本性质,为后边学习圆的性质做铺垫.过渡语为进一步认识圆的有关性质,我们先了解关于圆的一些概念.认识圆的有关概念活动一

    14、:自主学习教材147页.【学生活动】互相交流和圆有关的概念及表示方法.【课件展示】1.弦、直径:圆上任意两点间的线段叫做这个圆的一条弦.过圆心的弦叫做这个圆的直径.2.弧、半圆:圆上任意两点间的部分叫做圆弧,简称弧.圆的直径将这个圆分成能够完全重合的两条弧,这样的一条弧叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.如图所示,点A,B,C,D在O上.线段AB为O的一条弦,AC为O的直径.直径AC所分的两个半圆分别为半圆ADC和半圆ABC.以AB为端点的弧有两条,其中劣弧用AB来表示,读作“弧AB”,优弧用ADB来表示,读作“弧ADB”.3.等圆、等弧:能够完全重合的两个圆叫做等圆.能够完

    15、全重合的两条弧叫做等弧.半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等.活动二:思考下列问题:1.直径是弦,弦是直径正确吗?直径是最长的弦吗?2.半圆是弧,弧是半圆正确吗?半圆是最长的弧吗?3.长度相等的两条弧是等弧吗?为什么?【师生活动】小组合作交流,学生展示后教师点评,强调易错点.设计意图通过学生自主学习,掌握和圆有关的概念,培养学生的自学能力,同时通过活动2,加深学生对概念的辨析与再认识的过程.知识拓展1.圆上各点到圆心的距离都等于半径.2.到圆心的距离等于半径的点都在圆上.3.圆可以看做到定点的距离等于定长的点的集合.4.圆是一条封闭的曲线,是指圆周而不是指圆面,圆由圆心确定位置

    16、,由半径确定大小.5.弦是一条线段,它的两个端点都在圆上.6.直径是弦,但弦不一定是直径,直径是圆中最长的弦.1.圆的定义:平面上,到定点的距离等于定长的所有点组成的图形,叫做圆,这个定点叫做圆心,这个定长叫做圆的半径.2.圆的元素:圆心决定圆的位置、半径决定圆的大小.3.圆的对称性:圆既是轴对称图形又是中心对称图形.4.和圆有关的概念:弦、直径、弧、优弧、劣弧、半圆、等圆、等弧.1.下列说法:直径不是弦;半圆是弧,但弧不一定是半圆;在同圆或等圆中,优弧一定比劣弧长;长度相等的弧是等弧.其中正确的有()A.1个B.2个C.3个D.4个解析:直径不是弦,错误;半圆是弧,但弧不一定是半圆,正确;在

    17、同圆或等圆中,优弧一定比劣弧长,正确;能够完全重合的弧是等弧,长度相等的弧不一定能重合,错误.故选B.2.如图所示,在O中,弦的条数是()A.2B.3C.4D.以上均不正确解析:观察可得,AB,BC,BD,CD都是O的弦.故选C.3.如图所示,AB是O的直径,点C,D在O上,BOC=110,ADOC,则AOD=.解析:BOC=110,BOC+AOC=180,AOC=70,ADOC,OD=OA,D=A=70,AOD=180-2A=40.故填40.4.如图所示,O为圆心.(1)写出图中所有的直径;(2)写出图中所有的弦;(3)写出以A为一个端点的所有弧.解:(1)直径有AC,BD.(2)弦有AB,

    18、AC,BD,BC.(3)以A为一个端点的弧有AB,ABC,ABD,AD,ADC,ADB.28.1圆的概念及性质圆的概念共同探究圆的对称性认识圆的有关概念一、教材作业【必做题】教材第148页习题A组第1,2,3题.【选做题】教材第149页习题B组第1,2题.二、课后作业【基础巩固】1.以点O为圆心作圆,可以作()A.1个B.2个C.3个D.无数个2.下列说法不正确的是()A.半径相等的两个圆是等圆B.半圆所对的弦是直径C.长度相等的弧是等弧D.直径是圆中最长的弦3.如图所示,将一个含有60角的直角三角板摆放在半圆形纸片上,O为圆心,则ACO的度数为()A.150B.120C.100D.604.已

    19、知圆外一点和圆周的最短距离为2,最长距离为8,则该圆的半径是()A.5B.4C.3D.25.已知圆O的半径是3,圆上有一定点P,一动点Q,当Q沿圆周运动时,PQ长度的取值范围是.6.如图所示,分别以A,B两点为圆心,线段AB的长为半径的两个圆相交于C,D两点,则CAD=.7.如图所示,已知OA,OB,OC是O的三条半径,AOC=BOC,M,N分别为OA,OB的中点,求证MC=NC.8.如图所示,AB是O的弦(非直径),C,D是AB上的两点,并且AC=BD.求证OC=OD.【能力提升】9.如图所示,以ABC的边BC为直径的O分别交AB,AC于点D,E,连接OD,OE,若A=65,则DOE=.10

    20、.如图所示,CD是O的直径,EOD=84,AE交O于点B,且AB=OC,求A的度数.【拓展探究】11.如图所示,O的半径OC,OD分别交弦AB于点E,F,且CE=DF.请探究线段AE与BF的数量关系,并给予证明.12.如图所示,两正方形彼此相邻且大正方形ABCD的顶点A,D在半圆O上,顶点B,C在半圆的直径上,CO=BO,小正方形BEFG的顶点F在半圆O上,B,E两点在半圆O的直径上,点G在大正方形的边AB上,若小正方形的边长是4 cm,求该半圆的半径.【答案与解析】1.D(解析:因为半径没有确定,所以以点O为圆心可以作无数个圆.故选D.)2.C(解析:半径相等的两个圆能够完全重合,是等圆,故

    21、A正确;半圆所对的弦是直径,故B正确;长度相等的弧不一定能重合,故C错误;直径是圆中最长的弦,故D正确.故选C.)3.B(解析:由图可知,OBC=60,OC=OB,OBC是等边三角形,BCO=60,则ACO=120.故选B.)4.C(解析:圆的直径是8-2=6,圆的半径是3.故选C.)5.0PQ6(解析:Q沿圆周运动,PQ的最短距离为P,Q两点重合时,最小值为0,PQ的最长距离为PQ为直径时,最大值为6.故填0PQ6.)6.120(解析:连接BC,BD.根据题意,得AC=BC=AB=AD=BD,BAC=BAD=60.CAD=120.故填120.)7.证明:OA,OB为O的半径,OA=OB,M是

    22、OA的中点,N是OB的中点,OM=ON,AOC=BOC,OC=OC,MOCNOC,MC=NC.8.证明:如图所示,连接OA,OB.OB=OA,A=B.又AC=BD,AOCBOD,OC=OD.9.50(解析:A=65,B+C=180-65=115,又OB=OD=OE=OC,BDO=DBO,OEC=OCE,BDO+DBO+OEC+OCE=2115=230,BOD+EOC=2180-230=130,DOE=180-130=50.故填50.)10.解:如图所示,连接OB.AB=OC,AB=BO,BOC=A,EBO=BOC+A=2A,又OB=OE,E=EBO=2A,EOD=E+A=3A,而EOD=84,

    23、3A=84,A=28.11.解:AE=BF.证明:如图所示,连接OA,OB,OA=OB,OAB=OBA,即OAE=OBF.又OC=OD,CE=DF,OE=OF,OEF=OFE,AEO=BFO.在OAE与OBF中,OA=OB,OAE=OBF,AEO=BFO.OAEOBF(AAS).AE=BF.12.(解析:连接OA,设大正方形边长为x,根据勾股定理可得大圆半径,连接OF也可得直角三角形,已知小正方形的边长,在直角三角形中,利用勾股定理即可求解.)解:连接OA,OF.设大正方形的边长为2x,圆的半径为R,则BO=x,AB=2x.小正方形的边长为4 cm,小正方形的边长BE=EF=4,由勾股定理,得

    24、R2=OB2+AB2=OE2+EF2,即x2+4x2=(x+4)2+42,解得x=4或x=-2(舍去),R=x2+4x2=45(cm).即该半圆的半径为45 cm.圆在实际生活中无处不在,通过观察现实生活中有关圆的实例,激发学生探究有关圆的知识的欲望,同时体会圆在生活中的应用,感受圆上各点的特殊性.本节课通过创设问题情境,引导学生观察、思考、归纳总结形成圆的概念,本节课的主要学习方式为自主学习、合作交流、共同探究、归纳总结,通过让学生动手操作,发现圆的对称性,在整个教学过程中,自主学习、合作交流、归纳总结等学生活动贯穿始终,让学生真正体会数学概念的形成过程,培养了学生自学的能力和与人交流的能力

    25、,提高了学生归纳总结的能力.圆是学生在小学中就认识的一个图形,本节课的内容较少,学习应该是很简单的课时,所以在教学设计时以为学生通过自学就能掌握所有知识,造成在概念形成时过于急躁,对概念的掌握不太牢固,造成概念判断时出错较多,所以在以后的概念教学中,要重视概念的形成过程,淡化某个问题的结论.圆是生活中常见的几何图形,应用较为广泛,中考中也常会出现以圆为背景的题目,所以在本节课的教学设计中,要重视圆的概念的形成和建构,让学生通过生活实例体会和感受圆的概念,然后通过画圆感受圆上点的特征,在学生观察、思考、动手实践的过程中自然地构建出圆的概念,然后用自主学习、合作交流的形式完成和圆有关的概念的学习,

    26、给学生自学和交流的空间,通过学生之间的合作,体会数学学习带来的快乐.练习(教材第147页)1.解:画出的圆如图所示,其中OA=OB=2 cm,AC=3 cm,AB=4 cm,AE=2 cm.2.解:如图所示,(1)ABC即为ABC旋转后得到的三角形.(2)BB为点B所经过的路径,AA为点A所经过的路径.习题(教材第148页)A组1.解:(1)如下表:名称圆心弦半径直径半圆符号点OAB,CDOA,OBABADB,ACB(2)劣弧:AC,AD,BD,BC,CD;优弧:ABC,ACD,BAC,BAD,CAD.2.解:在.因为正方形对角线相等且互相平分,则OA=OB=OC=OD.B组1.解:如图所示.

    27、2.解:相等.矩形的两条对角线相等,a=BC =OA,b=MD =ON,而OA=ON,a=b.设计数学活动,重视知识形成本节课主要探究圆的有关概念和性质,是对小学里已学过的圆的认识的巩固,也为本章即将探究的圆的有关知识打下基础.本节课的重点是通过观察、操作、归纳,理解圆的定义,理解和圆有关的弦(直径)、弧(优弧、劣弧、半圆)、等圆、等弧的概念,并通过动手操作、归纳总结等数学活动探究圆的对称性.课前准备的生活中的圆形图片,由生活实例入手,激发学生探究圆的知识的欲望,然后通过思考车轮为什么是圆形的,对圆有了直观的认识,通过动手画圆,再次体会圆上各点的共同特征,很自然地归纳总结出圆的概念,通过学生自

    28、主学习教材有关概念,通过合作交流解决疑难问题和强化知识点,通过教师精心设计的各种数学活动,把课堂真正交给学生,给学生足够的时间思考和探索,教师只是一个引导者,引导学生经历知识的形成过程,从而强化学习重点,提高学习能力,发展创新精神.圆O所在平面上的一点P到圆O上的点的最大距离是10,最小距离是2,求此圆的半径是多少?解:如图所示,分两种情况:当点P为圆O内一点,过点P作圆O的直径,分别交圆O于A,B两点,由题意可得P到圆O的最大距离为10,最小距离为2,则AP=2,BP=10,所以圆O的半径为2+102=6.当点P在圆外时,作直线OP,分别交圆O于A,B两点,由题可得P到圆O的最大距离为10,

    29、最小距离为2,则BP=10,AP=2,所以圆O的半径为10-22=4.综上所述,所求圆的半径为6或4.28.2 过三点的圆1.了解三角形的外接圆、三角形的外心、圆的内接三角形的概念.2.理解“不在同一条直线上的三点确定一个圆”.3.能熟练掌握应用尺规过不在同一条直线上的三点作圆的方法.1.通过独立思考、动手操作、合作交流等数学活动,不断积累数学活动的经验,提高学生动手操作的能力,体会转化、数形结合思想在数学中的应用.2.通过学生自己动手作图,在动手参与的过程中探索、发现科学知识,进一步提高学生动手操作的积极性,提高学生应用数学知识解决实际问题的能力.1.通过探索知识的过程激发学生观察、探究、发

    30、现数学问题和解决数学问题的兴趣和欲望.2.通过小组合作交流,学会与他人合作,并能与他人交流思维的过程和结果.3.增强学生的数学应用意识,提高学生学习数学的兴趣,培养学生永无止境的科学探索精神.【重点】“过不在同一条直线上的三点作圆”的方法.【难点】如何确定圆的思维过程.【教师准备】多媒体课件.【学生准备】预习教材P150151.导入一:复习提问:1.根据圆的定义,确定圆的两个基本要素是什么?2.如何用尺规作图作线段的垂直平分线?3.线段垂直平分线有什么性质?4.三角形三边的垂直平分线的交点有几个?交点与三角形三个顶点之间在距离上有什么关系?导入二:一位考古学家在长沙马王堆汉墓挖掘时,发现一圆形

    31、瓷器碎片,你能帮助这位考古学家画出这个碎片所在的整个圆吗?过渡语要画出圆就要找到圆心和半径,怎样找到圆心和半径,我们学习了这节课后就会找到答案.设计意图通过提问,既复习了前面的知识,又使学生进入了状态,为本节课的学习做好铺垫.由生活实例导入新课,激发学生的求知欲望,让每个学生都迅速进入积极思维的状态.过渡语两点能够确定一条直线.那么,两个点能确定一个圆吗?三个点呢?让我们一起探究这些问题!共同探究不在同一条直线上的三点确定一个圆思路一【课件展示】动手操作,并思考回答:1.作圆,使该圆经过已知点A,你能作出几个这样的圆?(圆心和半径的位置不定,可以作出无数个圆)2.平面上有两点A,B,过点A,B

    32、的圆有多少个?这些圆的圆心到点A,B的距离具有怎样的关系?圆心是否在线段AB的垂直平分线上?(过两点A,B的圆有无数个,这些圆的圆心到点A,B的距离相等,它们的圆心在线段AB的垂直平分线上)【师生活动】学生独立思考、动手画图,小组合作交流,针对2教师引导:圆上的点到圆心的距离相等,确定圆心的位置时,使它到点A,B的距离相等,圆心在线段AB的垂直平分线上.学生黑板上作图,教师进行点评.3.平面上三点A,B,C不在一条直线上.过点A,B,C的圆是否存在?如果存在,这样的圆有多少个?你能确定经过A,B,C三点的圆的圆心及半径吗?(存在,只有一个,分别作线段AB,BC的垂直平分线,两条垂直平分线的交点

    33、就是圆心,圆心到其中一点的距离就是半径)4.如果平面上三点A,B,C在一条直线上,经过A,B,C的圆是否存在?为什么?(不存在,因为线段AB,BC的垂直平分线平行,没有交点)【师生活动】学生独立思考后小组合作交流,教师巡视中帮助有困难的学生,对有困难的学生引导分析,所求的圆要经过A,B,C三点,所以圆心到这三点的距离相等,因此这个点要在线段AB的垂直平分线上,又要在线段BC的垂直平分线上.教师对学生的回答进行点评纠正,师生共同归纳结论,然后课件展示.【课件展示】如图(1)所示,过平面内一点A,有无数多个圆,圆心的位置和半径的大小不确定.如图(2)所示,过平面内两点A,B,有无数多个圆,这些圆的

    34、圆心到A,B两点的距离相等,即圆心在线段AB的垂直平分线上.如图(3)所示,过平面内不共线的三点A,B,C,有且只有一个圆,圆心到A,B,C三点的距离相等,即圆心为线段AB,BC的垂直平分线的交点.过同一条直线上的三点的圆不存在.思路二【课件展示】教师引导学生思考、操作:1.确定一个圆需要、两个元素,过平面内点A,你能作出个圆.2.画出过平面上一点A的圆.3.圆心到圆上两点A,B的距离,所以圆心在线段AB的,则过平面上两点A,B有个圆.4.画出过平面上A,B两点的圆.5.圆心到圆上两点B,C的距离,所以圆心在线段BC的,则过平面上不共线的三点A,B,C有个圆,圆心是,半径是.6.如果平面上三点

    35、A,B,C在一条直线上,经过A,B,C的圆是否存在?为什么?(不存在,因为线段AB,BC的垂直平分线平行,没有交点)【师生活动】教师引导学生思考、回答,对学生的回答进行点评、归纳,师生共同完成两个画图,课件展示结论和图形.【课件展示】如图(1)所示,过平面内一点A,有无数多个圆,圆心的位置和半径的大小不确定.如图(2)所示,过平面内两点A,B,有无数多个圆,这些圆的圆心到A,B两点的距离相等,即圆心在线段AB的垂直平分线上.如图(3)所示,过平面内不共线的三点A,B,C,有且只有一个圆,圆心到A,B,C三点的距离相等,即圆心是线段AB,BC的垂直平分线的交点.过同一条直线上的三点的圆不存在.设

    36、计意图通过动手操作、观察思考、合作交流、归纳结论,体会数形结合思想在数学中的应用,培养学生的数学思维能力和归纳总结能力,同时掌握把实际问题抽象转化为数学问题的重要思路.做一做:如图所示,过不在同一条直线上的三点A,B,C画圆.【师生活动】教师给学生足够的时间动手操作,然后小组交流答案,小组代表板书过程(或教师课件动画展示画图过程),并做出点评.【课件展示】作法:如图所示.1.分别连接AB,BC;2.分别作出线段AB,BC的垂直平分线l1和l2,设它们的交点为O,则OA=OB=OC;3.以点O为圆心,OA(或OB,OC)为半径作圆,则O即为所作的圆.结论:不在同一条直线上的三点确定一个圆.设计意

    37、图通过动手操作,引导学生进一步认识“过不在同一条直线上的三点只能画出一个圆”这一事实,进一步体验数学活动的探索与创造,感受数学的严谨性.例题讲解(教材151页例)用尺规作过三角形三个顶点的圆.已知:如图所示,ABC.求作:O,使它过三点A,B,C.【师生活动】学生独立完成作图过程,学生展示回答作图过程,并完成板书,教师课件展示作法,规范学生的几何语言,并归纳三角形的外接圆的概念.【课件展示】作法:如图所示.(1)分别作线段AB和BC的垂直平分线l1和l2.设l1与l2相交于点O.(2)以点O为圆心,OA为半径画圆.O即为所求.我们把经过三角形三个顶点的圆,叫做三角形的外接圆,外接圆的圆心叫做三

    38、角形的外心.【思考】1.三角形的外心到三角形的三个顶点的距离有什么关系?2.钝角三角形、直角三角形、锐角三角形的外心在什么位置?【师生活动】学生独立思考后,小组合作交流,学生回答问题,教师点评归纳.设计意图通过动手操作、思考交流,进一步体验数学活动的探索与创造,感受数学的严谨性,让学生经历知识的形成过程,提高学生分析问题、解决问题的能力和数学思维.(节前导入情境)一位考古学家在长沙马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助这位考古学家画出这个碎片所在的整个圆吗?【师生活动】学生独立思考后小组合作交流,共同完成确定圆心的过程,教师巡视中帮助有困难的学生,对学生的展示点评,并归纳已知一段弧,作

    39、所在圆的圆心的方法.结论:在残缺的圆上(或弧上)任意选取三点,确定过这三点的圆心就是所在圆的圆心.设计意图学生通过独立思考、合作交流完成节前导入生活情境,做到整节课首尾呼应,让学生体会数学在实际生活中的应用,巩固作三角形的外接圆的方法,同时培养学生的合作精神以及数学的应用意识.知识拓展1.经过同一条直线上的三个点不能作圆,要注意“过三点的圆”中的“三点”不在同一直线上,故“过三点有且只有一个圆”这种说法是错误的.2.“确定”一词是指不仅能作出一个圆,而且只能作出一个圆,即“有且只有”的意思.3.任意一个三角形都有且只有一个外接圆.4.三角形的外心不仅是三角形外接圆的圆心,它还是三角形三条边的垂

    40、直平分线的交点,它到三角形各个顶点的距离相等.5.锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.1.过平面内一点有无数多个圆.2.过平面内两点有无数多个圆,圆心在线段的垂直平分线上.3.作三角形的外接圆.4.不在同一条直线上的三点确定一个圆.1.下列说法正确的是()A.三点确定一个圆B.任意的一个三角形一定有一个外接圆C.三角形的外心是它的三个角的角平分线的交点D.任意一个圆有且只有一个内接三角形解析:不在同一条直线上的三个点确定一个圆,所以A错;任意三角形的三个顶点不在同一条直线上,所以一定有一个外接圆,所以B正确;三角形的外心是三边

    41、垂直平分线的交点,所以C错;任意一个圆有无数个内接三角形,所以D错.故选B.2.如图所示,点A,B,C在同一条直线上,点D在直线AB外,过这4个点中的任意3个点,能画圆的个数是()A.1B.2C.3D.4解析:根据题意得出:点D,A,B;点D,A,C;点D,B,C可以确定一个圆.故过这四点中的任意3个点,能画圆的个数是3.故选C.3.已知ABC的一边长为10,另两边长分别是方程x2-14x+48=0的两个根,若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是.解析:解方程x2-14x+48=0,得x1=8,x2=6,即ABC的三条边长为10,8,6.102=82+62,ABC是直角三角

    42、形,圆形纸片将此三角形完全覆盖的最小圆为三角形的外接圆,那么圆形纸片的最小直径为直角三角形的斜边,即为10,那么半径为5.故填5.4.已知RtABC的两直角边为a和b,且a,b是方程x2-3x+1=0的两根,求RtABC的外接圆面积.解:两直角边a,b分别是一元二次方程x2-3x+1=0的两根,a+b=3,ab=1,c2=a2+b2=(a+b)2-2ab=7,圆的半径r=12c=72,RtABC的外接圆的面积为r2=722=74.28.2过三点的圆共同探究不在同一条直线上的三点确定一个圆例题讲解一、教材作业【必做题】教材第152页习题A组第1,2题.【选做题】教材第152页习题B组第1,2题.

    43、二、课后作业【基础巩固】1.对于三角形的外心,下列说法错误的是()A.它到三角形三个顶点的距离相等B.它是三角形外接圆的圆心C.它是三角形三条边垂直平分线的交点D.它一定在三角形的外部2.下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.过两点A,B的圆的圆心在一条直线上C.过三点A,B,C的圆的圆心有且只有一点D.过四点A,B,C,D的圆不存在3.如图所示,在55的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点PB.点QC.点RD.点M4.A,B,C为平面上的三点,AB=2,BC=3,AC=5,则()A.可以画一个圆,使A,B,C都在圆周上B.可

    44、以画一个圆,使A,B在圆周上,C在圆内C.可以画一个圆,使A,C在圆周上,B在圆外D.可以画一个圆,使A,C在圆周上,B在圆内5.锐角三角形的外心在;直角三角形的外心在;钝角三角形的外心在.6.若AB=4 cm,则过点A,B且半径为3 cm的圆有个.7.在RtABC中,C=90,BC=5,AC=12,则ABC的外接圆半径为.8.如图所示,ABC,ABD,ABE都是以AB为斜边的直角三角形.求证点A,B,C,D,E在同一个圆上.【能力提升】9.如图所示,已知O是ABC的外接圆,若AB=AC=5,BC=6,则O的半径为()A.4B.3.25C.3.125D.2.2510.“不在同一直线上的三点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.【拓展探究】11.已知,如图(1)所示,ABC中,BA=BC,D是平面内不与A,B,C重合的任意一点,ABC=DBE,BD=BE.(1)求证ABDCBE;(2)如图(2)所示,当点D是ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.【答案与解析】1.D(解析:三角形的外心是三角形外接圆的圆心,所以B正确;三角形的外心是三角形三边垂直平分线的交点,到三角形的三个顶点的距离相等,所以A,C正确;


    注意事项

    本文(冀教版九年级数学上册《第28章圆》教案)为本站会员(吹**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开