欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    4.4指数函数、幂函数、对数函数增长的比较 课时练习(含答案)2022-2023学年高一数学北师大版(2019)必修第一册

    • 资源ID:232504       资源大小:171.96KB        全文页数:7页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    4.4指数函数、幂函数、对数函数增长的比较 课时练习(含答案)2022-2023学年高一数学北师大版(2019)必修第一册

    1、4.4 指数函数、幂函数、对数函数增长的比较一、单选题(本大题共3小题,共15分。)1. 给出4个函数,当时,其中增长速度最快的函数是( )A. B. C. D. 2. 小明在调查某网店每月的销售额时,得到了下列一组数据:(月份)23456(万元)1.402.565.311121.30现用下列函数模型中的一个近似地模拟这些数据的规律,其中最接近的一个是( )A. B. C. D. 3. 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案每天的回报如图所示横轴为投资时间,纵轴为每天的回报,根据以上信息,若使回报最多,下列说法错误的是()A. 投资3天以内(含3天),采用方案一B. 投

    2、资4天,不采用方案三C. 投资6天,采用方案一D. 投资12天,采用方案二二、多选题(本大题共3小题,共15.0分。在每小题有多项符合题目要求)4. 甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,它们的路程fi(x)(i1,2,3,4)关于时间x(x0)的函数关系式分别为f1(x)2x1,f2(x)x2,f3(x)x,f4(x)log2(x1),则下列结论正确的是()A. 当x1时,甲走在最前面B. 当x1时,乙走在最前面C. 当0x1时,丁走在最后面D. 如果它们一直运动下去,最终走在最前面的是甲5. 已知函数,则下列关于这三个函数的描述中,正确的是( )A. 随着的逐渐增大,增长速

    3、度越来越快于B. 随着的逐渐增大,增长速度越来越快于C. 当时,增长速度一直快于D. 当时,增长速度有时快于6. 以下四种说法中,错误的是( )A. 幂函数增长的速度比一次函数增长的速度快B. 对任意的x0,xalogaxC. 对任意的x0,axlogaxD. 不一定存在x0,当xx0时,总有axxalogax三、填空题(本大题共2小题,共10.0分)7. 在某种新型材料的研制中,实验人员获得了如下一组实验数据:现准备用下列四个函数中的一个近似地描述这些数据的规律:;其中最接近的一个是(只填序号)8. 对指数函数、幂函数、对数函数增长的对比知:若,那么当足够大时,一定要ax(填)四、解答题(本

    4、大题共7小题,共84.0分。解答应写出文字说明,证明过程或演算步骤)9. (本小题12.0分)如图,对数函数y=x的图象与一次函数y=f(x)的图象有A,B两个公共点.求一次函数y=f(x)的解析式.10. (本小题12.0分)举生活中与增长率有关的例子,并分析这种增长率符合一次函数、幂函数、指数函数中的哪一种11. (本小题12.0分)人类已进入大数据时代.目前,数据量已经从TB(1TB=1024GB)级别跃升到PB(1PB=1024TB),EB(1EB=1024PB)乃至ZB(1ZB=1024EB)级别.国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,200

    5、9年的数据量为0.8ZB,2010年增长到1.2ZB,2011年的数量更是高达1.82ZB,而到了2020年,预计全世界所产生的数据规模将达到2011年的44倍.为了较好地描述2008年起全球产生的数据量与时间x(单位:年)的关系,根据上述数据信息,从函数f(x)=kx+b和g(x)=中选择一个,并求出解析式.12. (本小题12.0分)某跨国饮料公司在对全世界所有人均GDP在0.58千美元的地区销售该公司A饮料的情况调查时发现:该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减下列几个模拟函数中:yax2bx;ykxb;ylogaxb;yaxb(x表示人均GDP,单位:千美元,y表示

    6、年人均A饮料的销售量,单位:L)用哪个模拟函数来描述人均A饮料销售量与地区的人均GDP关系更合适?说明理由13. (本小题12.0分)函数f(x)2x和g(x)x3(x0)的图象,如图所示设两函数的图象交于点A(x1,y1),B(x2,y2),且x1x2 (1)请指出示意图中曲线C1,C2分别对应哪一个函数; (2)结合函数图象,比较f(8),g(8),f(2015),g(2015)的大小14. (本小题12.0分)某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y(单位:万元)随生源利润x(单位:万元)的增加而增加,

    7、但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y0.2x,ylog5x,y1.02x,其中哪个模型符合该校的要求?15. (本小题12.0分)函数f(x)=1.1x,g(x)=lnx+1,h(x)=的图象如下图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,e,a,b,c,d为分界点)1.【答案】B2.【答案】B3.【答案】D4.【答案】CD5.【答案】BD6.【答案】ABC7.【答案】8.【答案】9.【答案】解:依题意,A(1,0),B(2,lg2),设f(x)=kx+b,则,解得,f(x)=lg2x-lg210.【答案】解:假设年初有万元,银行定期

    8、存款一年利率.若存款1年,则第年年底的资金有万元;若存款年,第年年底资金万元,再存年,则第年年底的资金有万元;依次类推,第年年底的资金有万元.这种增长符合指数函数.11.【答案】解:从第2年起,计算每一年数据量与前一年数据量的比值,列表如下时间/年20082009201020112020数据量/ZB0.490.81.21.821.8244增长比例1.631.501.52以时间为横轴,数据量为纵轴作图如图一从数据变化看,可选择指数型函数g(x)abx进行描述可以前4年增长比例的平均值作为函数的增长比例,则,而初始量a0.49,所以每一年全球产生的数据量可以表示为g(x)0.491.55x-200

    9、8画出函数yg(x)的图象(图(2),与散点图吻合程度较好12.【答案】解:用来模拟比较合适,因为二次函数可以先增后减,而该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减而表示的函数在区间上都是单调函数,所以都不合适,故用来模拟比较合适13.【答案】解:(1)C1对应的函数为g(x)x3(x0),C2对应的函数为f(x)2x(2)因为g(1)1,f(1)2,g(2)8,f(2)4,g(9)729,f(9)512,g(10)1000,f(10)1024,所以 f(1)g(1),f(2)g(2),f(9)g(9),f(10)g(10)所以1x12,9x210所以x18x22015从题中图

    10、象上知,当x1xx2时,f(x)g(x);当xx2时,f(x)g(x),且g(x)在(0,+)上是增函数,所以f(2015)g(2015)g(8)f(8)14.【答案】解:奖金y(单位:万元)随生源利润x(单位:万元)的增加而增加,所以是增函数,三个都满足,奖金总数不超过3万元,同时奖金不超过利润的20%,说明且,借助工具作出函数y3,y0.2x,ylog5x,y1.02 x的图象(如图所示)观察图象可知,在区间5,60上,y0.2x,y1.02 x的图象都有一部分在直线y3的上方,只有ylog5 x的图象始终在y3和y0.2x的下方,这说明只有按模型ylog5x进行奖励才符合学校的要求15.【答案】解:由指数爆炸、对数增长、幂函数增长的差异可得:曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)=,曲线C3对应的函数是g(x)=lnx+1由题图知,当0 x1时,f(x)h(x)g(x);当1xe时,f(x)g(x)h(x);当exa时,g(x)f(x)h(x);当axb时,g(x)h(x)f(x);当bxc时,h(x)g(x)f(x);当cxd时,h(x)f(x)g(x);当xd时,f(x)h(x)g(x)


    注意事项

    本文(4.4指数函数、幂函数、对数函数增长的比较 课时练习(含答案)2022-2023学年高一数学北师大版(2019)必修第一册)为本站会员(热***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开