欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2023届高考数学一轮复习专题15:解三角形(2)平面几何中的问题(含答案)

    • 资源ID:234884       资源大小:1.06MB        全文页数:14页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023届高考数学一轮复习专题15:解三角形(2)平面几何中的问题(含答案)

    1、专题15 解三角形(2)平面几何中的问题一、 典例分析题型二:解决平面几何中的问题1(2016新课标)在中,边上的高等于,则等于ABCD2(2016新课标)在中,边上的高等于,则ABCD3(2021浙江)我国古代数学家赵爽用弦图给出了勾股定理的证明弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示)若直角三角形直角边的长分别为3,4,记大正方形的面积为,小正方形的面积为,则254(2017浙江)已知,点为延长线上一点,连结,则的面积是,5(2015重庆)在中,的角平分线,则6(2015新课标)在平面四边形中,则的取值范围是,7(2021新高考)记的内角,的对边分别为,

    2、已知,点在边上,(1)证明:;(2)若,求8(2020江苏)在中,角、的对边分别为、已知,(1)求的值;(2)在边上取一点,使得,求的值二、真题集训1(2021浙江)在中,是的中点,则;2(2017全国)在中,为的中点,则3(2013福建)如图,在中,已知点在边上,则的长为4(2013广东)(几何证明选讲选做题)如图,在矩形中,垂足为,则5(2017新课标)的内角,的对边分别为,已知,(1)求;(2)设为边上一点,且,求的面积6(2015新课标)中,是上的点,平分,面积是面积的2倍(1)求;(2)若,求和的长7(2015新课标)中,是上的点,平分,()求()若,求8 (2015安徽)在中,点在

    3、边上,求的长典例分析答案题型二:解决平面几何中的问题1(2016新课标)在中,边上的高等于,则等于ABCD分析:作出图形,令,依题意,可求得,利用两角和的余弦即可求得答案解答:解:设中角、对应的边分别为、,于,令,在中,边上的高,在中,故,故选:点评:本题考查解三角形中,作出图形,令,利用两角和的余弦求是关键,也是亮点,属于中档题2(2016新课标)在中,边上的高等于,则ABCD分析:由已知,结合勾股定理和余弦定理,求出,再由三角形面积公式,可得解答:解:在中,边上的高等于,由余弦定理得:,故,故选:点评:本题考查的知识点是三角形中的几何计算,熟练掌握正弦定理和余弦定理,是解答的关键3(202

    4、1浙江)我国古代数学家赵爽用弦图给出了勾股定理的证明弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示)若直角三角形直角边的长分别为3,4,记大正方形的面积为,小正方形的面积为,则25分析:利用勾股定理求出直角三角形斜边长,即大正方形的边长,由,求出,再求出解答:解:直角三角形直角边的长分别为3,4,直角三角形斜边的长为,即大正方形的边长为5,则小正方形的面积,故答案为:25点评:本题考查了三角形中的几何计算和勾股定理,考查运算能力,属于基础题4(2017浙江)已知,点为延长线上一点,连结,则的面积是,分析:如图,取得中点,根据勾股定理求出,再求出,再根据即可求出,根

    5、据等腰三角形的性质和二倍角公式即可求出解答:解:如图,取得中点,在中,故答案为:,点评:本题考查了解三角形的有关知识,关键是转化,属于基础题5(2015重庆)在中,的角平分线,则分析:利用已知条件求出,然后利用正弦定理求出即可解答:解:由题意以及正弦定理可知:,即,可得,则,三角形是等腰三角形,故答案为:点评:本题考查正弦定理以及余弦定理的应用,三角形的解法,考查计算能力6(2015新课标)在平面四边形中,则的取值范围是,分析:如图所示,延长,交于点,设,求出,即可求出的取值范围解答:解:方法一:如图所示,延长,交于点,则在中,设,而,的取值范围是,故答案为:,方法二:如下图,作出底边的等腰三

    6、角形,倾斜角为的直线在平面内移动,分别交、于、,则四边形即为满足题意的四边形;当直线移动时,运用极限思想,直线接近点时,趋近最小,为;直线接近点时,趋近最大值,为;故答案为:,点评:本题考查求的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题7(2021新高考)记的内角,的对边分别为,已知,点在边上,(1)证明:;(2)若,求分析:(1)利用正弦定理求解;(2)要能找到隐含条件:和互补,从而列出等式关系求解解答:解:(1)证明:由正弦定理知,即,;(2)法一:由(1)知,在中,由余弦定理知,在中,由余弦定理知,即,得,或,在中,由余弦定理知,当时,(舍;当时,;综上所述,法二:

    7、点在边上且,而由(1)知,即,由余弦定理知:,或,在中,由余弦定理知,当时,(舍;当时,;综上所述,点评:本题考查正弦定理及余弦定理的内容,是一道好题8(2020江苏)在中,角、的对边分别为、已知,(1)求的值;(2)在边上取一点,使得,求的值分析:(1)由题意及余弦定理求出边,再由正弦定理求出的值;(2)三角形的内角和为,可得为钝角,可得与互为补角,所以展开可得及,进而求出的值解答:解:(1)因为,由余弦定理可得:,由正弦定理可得,所以,所以;(2)因为,所以,在三角形 中,易知为锐角,由(1)可得,所以在三角形中,因为,所以,所以点评:本题考查三角形的正弦定理及余弦定理的应用,及两角和的正

    8、弦公式的应用,属于中档题真题集训答案1解:在中:,解得:或(舍去)点是中点,在中:,;在中:故答案为:;2解:在中,为的中点,可得,平方可得,即为,可得,可得为直角三角形,且,则,故答案为:103解:,在中,根据余弦定理得:,则故答案为:4解:矩形,在中,根据勾股定理得:,即,在中,根据余弦定理得:,则故答案为:5解:(1),由余弦定理可得,即,即,解得(舍去)或,故(2),6解:(1)如图,过作于,平分在中,在中,;分(2)由(1)知,过作于,作于,平分,令,则,由余弦定理可得:,的长为,的长为17解:()如图,由正弦定理得:,平分,;(),由()知,即8解:,在中,由余弦定理可得:分在中,由正弦定理可得:,分过点作的垂线,垂足为,由得:,中,分


    注意事项

    本文(2023届高考数学一轮复习专题15:解三角形(2)平面几何中的问题(含答案))为本站会员(热***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开