欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2023届高三第一轮复习《2.3函数的解析式》素养提升检测试卷(含答案解析)

    • 资源ID:234911       资源大小:730.58KB        全文页数:12页
    • 资源格式: DOCX        下载积分:30积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要30积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023届高三第一轮复习《2.3函数的解析式》素养提升检测试卷(含答案解析)

    1、2.3函数的解析式一、单选题(在每小题给出的四个选项中,只有一项是符合题目要求的)1(2020安徽蚌埠市模拟)已知函数是一次函数,且恒成立,则A1B3C5D72.(2021山西长治高三检测)已知满足,则等于( )A B CD3(2021重庆南开中学高三检测)若,则的解析式为()ABCD4(2021贵州安顺市模拟)已知函数满足,则的解析式为( )ABCD5(2021江苏南通高三模拟(理),则在处的切线方程为()A B CD6(2021沙溪运城高三质检)定义两种运算:,则函数的解析式为()A, B,C, D,7(2021河北保定高三模拟)为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密解密

    2、原理如图:,现在加密密钥为,解密密钥为,如下所示:发送方发送明文“1”,通过加密后得到密文“18”,再发送密文“18”,接受方通过解密密钥解密得明文“49”,问若接受方接到明文“4”,则发送方发送明文为()ABC162D8(2021四川宜宾高三模拟)设函数满足且对任意都有则A0B1CD9(2020江苏星海实验中学高三模拟)已知函数满足,则的值为()A15B30C60D7510(2021四川成都双流中学高二期中)定义在上的函数满足:,当时,有,且设,则实数与的大小关系为( )ABCD不确定11(2021河南信阳高中高三开学考试(理)已知函数是R上的单调函数,且对任意实数,都有成立,则的值是()A

    3、BCD12(2022辽宁抚顺高三模拟(理)定义在上的单调函数满足,则方程的解所在的区间是()ABCD二、填空题13(2022浙江绍兴市模拟)已知是二次函数,且满足,求的解析式 14(2021河南省信阳市第二高级中学高三阶段练习(文)若定义在R上的函数满足:对于任意的,都有;为奇函数.则函数的一个解析式可以是_.15(2022年福建模拟试题)设是定义在上的函数,且满足对任意等式恒成立,则的解析式为_16(2022浙江温州市模拟)已知函数,则_.三、解答题(解答时应写出文字说明、证明过程或演算步骤)17(2021江苏常州高三测试)一次函数是R上的增函数,且,(1)求;(2)若在单调递增,求实数m的

    4、取值范围;(3)当时,有最大值13,求实数m的值18(2021重庆市育才中学高三检测)已知函数,分别是定义在上的偶函数和奇函数,且.(1)求函数,的解析式;(2)若对任意,不等式恒成立,求实数的最大值;(3)设,若函数与的图象有且只有一个公共点,求的取值范围.19(2022江苏常州高二期末)在数学中,双曲函数是一类与常见的三角函数类似的函数,最基本的双曲函数是双曲正弦函数和双曲余弦函数(历史上著名的“悬链线问题”与之相关)记双曲正弦函数为f(x),双曲余弦函数为g(x),已知这两个最基本的双曲函数具有如下性质:定义域均为R,且f(x)在R上是增函数;f(x)为奇函数,g(x)为偶函数;(常数e

    5、是自然对数的底数,)利用上述性质,解决以下问题:(1)求双曲正弦函数和双曲余弦函数的解析式;(2)求函数,的值域;(3)设,若对任意的正数,都有,且,求实数m的取值范围2.3函数的解析式一、单选题(在每小题给出的四个选项中,只有一项是符合题目要求的)1(2020安徽蚌埠市模拟)已知函数是一次函数,且恒成立,则A1B3C5D7【答案】D【解析】设,则因为恒成立,所以且,解得,所以,即有.故选:D.2.(2021山西长治高三检测)已知满足,则等于( )A B CD【答案】D【解析】把中的换成,得由得.故选:D3(2021重庆南开中学高三检测)若,则的解析式为()ABCD【答案】C【解析】解:已知,

    6、令,则 ,.故选:C.4(2021贵州安顺市模拟)已知函数满足,则的解析式为( )ABCD【答案】A【解析】函数满足,设,则,由知,故原函数可转化为,即的解析式为.故选:A.5(2021江苏南通高三模拟(理),则在处的切线方程为()A B CD【答案】D【解析】由可得,即,联立方程,可得,且在处的切线方程为,即故选:D6(2021沙溪运城高三质检)定义两种运算:,则函数的解析式为()A, B,C, D,【答案】A【解析】因为,所以又,所以且,于是,且故选A7(2021河北保定高三模拟)为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密解密原理如图:,现在加密密钥为,解密密钥为,如下所示:

    7、发送方发送明文“1”,通过加密后得到密文“18”,再发送密文“18”,接受方通过解密密钥解密得明文“49”,问若接受方接到明文“4”,则发送方发送明文为()ABC162D【答案】A【解析】由其加密原理可知当时,从而;.由解密原理可知当时,;若接受方接到明文为“4”则有,从而有,解得,即发送方明文为.故选:A8(2021四川宜宾高三模拟)设函数满足且对任意都有则A0B1CD【答案】D【解析】,取 得到取 得到得到 故答案选D9(2020江苏星海实验中学高三模拟)已知函数满足,则的值为()A15B30C60D75【答案】B【解析】因此故选:B10(2021四川成都双流中学高二期中)定义在上的函数满

    8、足:,当时,有,且设,则实数与的大小关系为( )ABCD不确定【答案】C【解析】 函数 满足,令 得 ;令 得 在 为奇函数,单调减函数且在 时,则在时,又 , ,即 ,故选C.11(2021河南信阳高中高三开学考试(理)已知函数是R上的单调函数,且对任意实数,都有成立,则的值是()ABCD【答案】D【解析】由是上的单调函数,可设,则恒成立,由得:,解得:,.故选:.12(2022辽宁抚顺高三模拟(理)定义在上的单调函数满足,则方程的解所在的区间是()ABCD【答案】A【解析】,且函数是在上的单调函数令,,则即单调递增,可解得,解得故选:A二、填空题13(2022浙江绍兴市模拟)已知是二次函数

    9、,且满足,求的解析式 【答案】=【解析】,则,即,即,所以,解得.因此,14(2021河南省信阳市第二高级中学高三阶段练习(文)若定义在R上的函数满足:对于任意的,都有;为奇函数.则函数的一个解析式可以是_.【答案】【解析】依题意,令,显然定义域为R,任意的,又,即是奇函数,因此,函数同时满足和,所以函数的一个解析式可以是:.故答案为:15(2022年福建模拟试题)设是定义在上的函数,且满足对任意等式恒成立,则的解析式为_【答案】【解析】是定义在上的函数,且对任意,恒成立,令,得 ,即,。故答案为:16(2022浙江温州市模拟)已知函数,则_.【答案】【解析】因为函数,又,所以的根为,即方程的

    10、根为,所以,所以,所以,故答案为:三、解答题(解答时应写出文字说明、证明过程或演算步骤)17(2021江苏常州高三测试)一次函数是R上的增函数,且,(1)求;(2)若在单调递增,求实数m的取值范围;(3)当时,有最大值13,求实数m的值【答案】(1);(2);(3)或.【解析】(1)解:一次函数是R上的增函数,设则, ,解得或不合题意,舍去(2)解:由(1)得,因为对称轴方程为,根据题意可得,解得的取值范围为(3)解:2x2+(1+2m)x+m,对称轴为x,当x1,3时,g(x)有最大值13,由于的图象开口向上,则的最大值只能为端点处的函数值,若是最大值13,即有212m+m13,解得m12,

    11、此时2x223x12在1,3上递减,符合题意;若是最大值13,即有18+3+6m+m13,解得m,此时2x2x在1,)递减,在(,3递增,且13,符合题意综上可得,m12或m18(2021重庆市育才中学高三检测)已知函数,分别是定义在上的偶函数和奇函数,且.(1)求函数,的解析式;(2)若对任意,不等式恒成立,求实数的最大值;(3)设,若函数与的图象有且只有一个公共点,求的取值范围.【答案】(1),;(2);(3)或.【解析】(1)解:,用代替得,则,解方程得,.(2)解: 对任意恒成立,令,因为令在单调递增,故则对恒成立,函数在上单调递增,所以当时,故,即.(3)解:由题:方程有且只有一个根

    12、即有且只有一个根,令,因为在上单调递增,且故方程(*式)有且只有一个正根当时,方程有唯一根,符合题意;当时,方程变形为,解得两根为,因为(*式)有且只有一个正根,故或,解得或.综上:的取值范围为或.19(2022江苏常州高二期末)在数学中,双曲函数是一类与常见的三角函数类似的函数,最基本的双曲函数是双曲正弦函数和双曲余弦函数(历史上著名的“悬链线问题”与之相关)记双曲正弦函数为f(x),双曲余弦函数为g(x),已知这两个最基本的双曲函数具有如下性质:定义域均为R,且f(x)在R上是增函数;f(x)为奇函数,g(x)为偶函数;(常数e是自然对数的底数,)利用上述性质,解决以下问题:(1)求双曲正弦函数和双曲余弦函数的解析式;(2)求函数,的值域;(3)设,若对任意的正数,都有,且,求实数m的取值范围【答案】(1) (2) (3)1,1【解析】(1)由性质知,所以,由性质知,所以,解得(2)函数,设,由性质,在R是增函数知,当时,因为,所以原函数即:,故值域为(3)对任意的正数,都有,可知即对一切正数x恒成立,又,可得,即对一切正数x恒成立,所以;由,可得整理得,两边同乘以得,所以,因为,所以,因此只需对任意恒成立,所以,即综上可知,实数m的取值范围为1,1.


    注意事项

    本文(2023届高三第一轮复习《2.3函数的解析式》素养提升检测试卷(含答案解析))为本站会员(热***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开