欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    【鲁教版】数学九年级下册:5.4《圆周角和圆心角的关系》课件(3)

    • 资源ID:23719       资源大小:595.50KB        全文页数:23页
    • 资源格式: PPT        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【鲁教版】数学九年级下册:5.4《圆周角和圆心角的关系》课件(3)

    1、3.3 圆周角和圆心角的关系(1),大兴学校 卿丽萍,1.圆心角的定义?,答:顶点在圆心的角叫圆心角.,圆心角的度数和它所对的弧的度数的关系,我们把顶点在圆心的周角等分成360份时,每一份的圆心角是1的角。,在同圆或等圆中,圆心角的度数和它所对的弧的度数相等。,因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份。我们把每一份这样的弧叫做1的弧。,在同圆或等圆中,,点与圆的位置关系有哪些?,当角的顶点发生变化时,这个角的位置有哪几种情况?,圆周角,特征:, 角的顶点在圆上., 角的两边都与圆相交.,圆周角定义: 顶点在圆上, 并且两边都和圆相交的角 叫圆周角.,练习:,1.判别下列

    2、各图形中的角是不是圆周角,并说明理由。,不是,不是,是,不是,不是,图,图,图,图,图,2、指出图中的圆周角。,有没有圆周角?,有没有圆心角?,它们有什么共同的特点?,它们都对着同一条弧所对的,下列图形中,哪些图形中的圆心角BOC和圆周角A是同对一条弧。,自己动手量一量同一条弧所对的圆心角和圆周角分别是多少度?,一条弧所对的圆周角等于它所对的圆心角的一半,为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有的关系.,类比圆心角探知圆周角,在同圆或等圆中,相等的弧所对的圆心角相等.,在同圆或等圆中,相等的弧所对的圆周角有什么关系?,圆周角和圆心角的关系,如图,观察弧AC所对的圆周角ABC

    3、与圆心角AOC,它们的大小有什么关系?,说说你的想法,并与同伴交流.,教师提示:注意圆心与圆周角的位置关系.,圆周角和圆心角的关系,1.首先考虑一种特殊情况: 当圆心(O)在圆周角(ABC)的一边(BC)上时,圆周角ABC与圆心角AOC的大小关系.,AOC是ABO的外角,,AOC=B+A.,OA=OB,,A=B.,AOC=2B.,即 ABC = AOC.,你能写出这个命题吗?,一条弧所对的圆周角等于它所对的圆心角的一半.,老师期望:你可要理解并掌握这个模型.,圆周角和圆心角的关系,如果圆心不在圆周角的一边上,结果会怎样? 2.当圆心(O)在圆周角(ABC)的内部时,圆周角ABC与圆心角AOC的

    4、大小关系会怎样?,老师提示:能否转化为1的情况?,过点B作直径BD.由1可得:, ABC = AOC.,你能写出这个命题吗?,一条弧所对的圆周角等于它所对的圆心角的一半.,ABD = AOD,CBD = COD,圆周角和圆心角的关系,如果圆心不在圆周角的一边上,结果会怎样? 3.当圆心(O)在圆周角(ABC)的外部时,圆周角ABC与圆心角AOC的大小关系会怎样?,老师提示:能否也转化为1的情况?,过点B作直径BD.由1可得:, ABC = AOC.,你能写出这个命题吗?,一条弧所对的圆周角等于它所对的圆心角的一半.,ABD = AOD,CBD = COD,圆周角定理,综上所述,圆周角ABC与圆

    5、心角AOC的大小关系是:,圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.,老师提示:圆周角定理是承上启下的知识点,要予以重视.,即 ABC = AOC.,练习:,2.如图,圆心角AOB=100,则ACB=_。,1.求圆中角X的度数,130,C,C,D,B,3、 如图,在直径为AB的半圆中,O为圆心,C、D为半圆上的两点,COD=500,则CAD=_,做做看,收获知多少?,一、判断 1、顶点在圆上的角叫圆周角。 2、圆周角的度数等于所对弧的度数的一半。 二、计算 1、半径为R的圆中,有一弦分圆周成1:2两 部分,则弦所对的圆周角的度数是 。,O,60或120,2、如图,在O中,BOC=

    6、50,求A的大小.,解: A= BOC = 25.,习题1.如图:OA、OB、OC都是O的半径 AOB=2BOC. 求证:ACB=2BAC.,证明:,ACB= AOB,1,2,BAC= BOC,2,AOB=2BOC,ACB=2BAC,四、新知应用:,1,规律:解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理,习题1.如图:OA、OB、OC都是O的半径 AOB=2BOC. 求证:ACB=2BAC.,证明:,ACB= AOB,1,2,BAC= BOC,2,AOB=2BOC,ACB=2BAC,四、新知应用:,1,规律:解决圆周角和圆心角的计算和证明问题

    7、,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理,一 、这节课主要学习了两个知识点: 1、圆周角定义。 2、圆周角定理及其定理应用。 二、方法上主要学习了圆周角定理的证明渗透了“特殊到一般”的思想方法和分类讨论的思想方法。,五、总结扩展:,三、圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用,2.如图(2),在O中,B,D,E的大小有什么关系? 为什么?3.如图(3),AB是直径,你能确定C的度数吗?,拓展 化心动为行动,1.如图(1),在O中,BAD=50,求C的大小.,练习: 4、AB、AC为O的两条弦,延长CA到D,使AD=AB,如果ADB=350,求BOC的度数。 5、如图,在O中,BC=2DE, BOC=84,求 A的度数。,


    注意事项

    本文(【鲁教版】数学九年级下册:5.4《圆周角和圆心角的关系》课件(3))为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开