1、2023年重庆市江北区三校联考中考一模数学试题一、选择题:(本大题10个小题,每小题4分,共40分)1. 8的相反数是( )A B. 8C. D. 2. 下列图案中是中心对称图形的是( )A. B. C. D. 3. 下列运算正确的是( )A. B. C. D. 4. 估计的值在( )A. 1到2之间B. 2到3之间C. 3到4之间D. 4到5之间5. 如图,四边形与四边形位似,其位似中心为点,且,则四边形的周长与四边形的周长之比是( )A. B. C. D. 6. 已知甲码头与乙码头相距36千米,一轮船往返于甲,乙两码头之间,轮船由甲码头顺流而下到乙码头所用时间比逆流而上所用时间少2小时,已
2、知水流速度为3千米/时,求船在静水中的速度,设船在静水中的速度为x千米/时,根据题意列方程为( )A. B. C. D. 7. 下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,第1个图形中小正方形的个数是3个,第2个图形中小正方形的个数是8个,第3个图形中小正方形的个数是15个,第9个图形中小正方形的个数是( )A. 100B. 99C. 98D. 808. 如图,内接于,则的半径为( )A. 4B. C. D. 9. 如图,在平行四边形中,点E、F分别在的延长线上,则的长是( )A. B. C. 2D. 10. 在黑板上写下一列不同的自然数,允许擦去任意两个数,再写上它
3、们两个数的和或差(前数后数),并放在这列数的最后面,重复这样的操作,直至在黑板上仅留下一个数为止,下列说法中正确的个数为( )写了2、3、4,按此操作,最后留下的那个数可能是5;写了1、3、5、7,按此操作,最后留下的那个数可能有16种不同的结果;写了1、2、319、20,按此操作,最后留下的那个数可能是A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上11. 计算:_12. 分解因式:3a26a+3=_13. 现有分别标有汉字“圆”“梦”“今”“夏”的四张卡片,它们除汉字外完全相同,若把四张卡片背面朝上,洗匀后放在
4、桌面上,然后随机抽出一张,不放回,再随机抽出一张,两次抽出的卡片上的汉字能组成“圆梦”的概率是_14. 如图,在平面直角坐标系xOy中,直线与反比例函数的图像交于点A,将直线沿y轴向上平移b个单位长度,交x轴于点C,交反比例函数图像于点B,若,则b的值为_15. 如图,在矩形中,以点C为圆心,为半径画弧,交边于点H,则图中阴影部分的面积是_16. 若数m使关于x不等式组的解集为,且使关于y的分式方程的解为正数,则符合条件的所有整数m的和为_17. 在中,点D是AB边上一点,连接CD,将沿CD翻折得到,其中与AB边交于点E,连接,则的长为_18. 一个数位大于等于4的多位数n,规定其末三位数与末
5、三位数以前的数字所组成的数之差记为,则_;若能被11整除,则这个多位数就一定能被11整除,反之,一个数位大于等于4的多位数n能被11整除,则n的末三位数与末三位数以前的数字所组成的数之差一定能被11整除若两个四位数s,t,其中s能被11整除,且,t的千位数字为,百位数字为4,十位数字为3,个位数字为(a,b,c均为整数),规定,当时,则的最小值为_三、解答题:(本大题共8个小题,19题8分,20-26每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上19. 计算(1)(2)20. 如图所示,在正方形中,点M
6、是对角线上一个点连接,过点M作交于点N,过点M作于点G,试说明,的数量关系解答思路是:过点M作垂线交于点F,构造与全等使得问题得到解决,请根据解答思路完成下面的作图与填空:(1)尺规作图:过点M作垂线交于点F(用基本作图,保留作图痕迹,不写作法,结论)(2)解:猜想:四边形是正方形,_,_四边形是正方形_在与中,_21. 体育考试是九年级学生决胜中考的第一关,为了提升体育成绩,某校九年级学生加强了“开合跳”训练,为了了解学生训练情况,从某校九年级随机抽取男生,女生各40名进行一分钟快速训练,并对训练结果进行整理,描述和分析,1分钟“开合跳”完成的个数用x表示,并分成了四个等级,其中A:,B:,
7、C:,D:,下面给出了部分信息:女生1分钟“开合跳”个数扇形统计图;男生1分钟“开合跳”个数频数统计表等级ABCD频数16a83男生B组数据:从高到低排列,排在最后面10个数据分别为:79,78,76,76,75,75,74,74,73,72男生和女生1分钟“开合跳”个数的平均数,中位数,众数,A等级所占百分比如下表:平均数众数中位数A等级所占百分比男生7888b40%女生78877830%根据以上信息,解答下列问题:(1)_,_,_;(2)根据以上数据分析,你认为该校九年级的男生“开合跳”成绩更优异,还是女生“开合跳”成绩更优异?请说明理由(写出一条理由即可)(3)若该校九年级学生共1600
8、名,估计九年级“开合跳”个数达到A等级的人数22. “一年好景君须记,最是橙黄橘绿时”,重庆柑橘在全国享有美誉,它们色泽橙黄艳丽,气味芬芳持久,汁水横溢,酸甜清新,我市柑橘植面积已连续多年全国第一2022年全国柑橘种植总面积为2400万亩,年总产量为2120万吨,我市柑橘平均亩产量为1800kg,国内其他地区柑橘的平均亩产量为700kg,请解答下列问题:(1)求我市2022年柑橘的种植面积是多少万亩;(2)2023年,若我市柑橘平均亩产量仍保持1800kg不变,要使我市柑橘的年总产量不低于765万吨,那么2023年我市至少应再多种植多少万亩的柑橘?23. 如图所示,在一次海上救援演习中,游艇A
9、按计划停泊在搜救艇B的南偏东30方向上,同时,在搜救艇B的正南方向,与搜救艇B相距40海里处还设置了另一支搜救艇C,此时游艇A在搜救艇C的东北方向上,随着演习正式开始,游艇A按计划向搜救艇B与C同时发出求救信号,并在原地等待救援(参考数据:,)(1)在演习正式开始前,搜救艇B与游艇A相距多少海里?(结果保留根号)(2)若搜救艇B与C同时收到游艇A的求救信号,它们同时出发实施救援行动,搜救艇B沿BA行驶,搜救艇C西东沿CA行驶,其中搜救艇B的速度为每小时25海里,搜救艇C的速度为每小时16海里,请通过计算判断哪支搜救艇先到达游艇A的所在地?24. 如图1,在矩形中,动点P以每秒1个单位的速度,从
10、点A出发,按的顺序在边上运动与点P同时出发的动点Q以每秒个单位的速度,从点D出发,在射线上运动当动点P运动到点D时,动点P、Q都停止运动在运动路径上,设点P的运动时间为t秒,此时点P、点B之间的路径距离与点P、点C之间的路径距离之和为,动点Q的运动路程为(1)分别求出,与t之间的函数关系式,并写出自变量t的取值范围;(2)在如图2的平面直角坐标系中,画出,的函数图象,并根据图象写出函数的一条性质:_;(3)根据图象直接写出当时,t的取值范围_25. 如图,抛物线与x轴交于点、B,与y轴交于点C,抛物线的对称轴为直线,点D是抛物线的顶点(1)求抛物线的解析式;(2)过点A作交对称轴于点F,在直线
11、下方对称轴右侧的抛物线上有一动点P,过点P作轴交直线于点Q,过点P作交于点E,求最大值及此时点P的坐标;(3)将原抛物线沿着x轴正方向平移,使得新抛物线经过原点,点M是新抛物线上一点,点N是平面直角坐标系内一点,是否存在以B、C、M、N为顶点的四边形是以为对角线的菱形,若存在,求所有符合条件的点N的坐标26. 在等腰三角形中,点E为上一点,连接(1)如图1,若,过点C作交BE延长线于点D,连接,过点A作交于点F,连接,求证:;(2)如图2,过A作交延长线于点D,将绕着点A逆时针旋转至,连接,使得于点G,与交于点M,若点M为的中点,且,猜想线段与之间的数量关系,并证明你的猜想;(3)如图3,若,
12、将沿着翻折得到(),点落在BE延长线上,交于点P,点Q、R分别是射线、上的点,连接、,满足,当取得最大值时,直接写出的最小值的平方2023年重庆市江北区三校联考中考一模数学试题一、选择题:(本大题10个小题,每小题4分,共40分)1. 8的相反数是( )A. B. 8C. D. 【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得【详解】解:8的相反数是,故选A【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键2. 下列图案中是中心对称图形的是( )A. B. C. D. 【答案】D【解析】【分析】根据如果一个图形绕某一点旋转后能与它自身重合,我们就把这个图形叫
13、做中心对称图形,对各个选项逐一判断即可【详解】解:A选项是等腰三角形,绕一点将等腰三角形旋转后不能与自身重合,故A不符合题意;B选项的图形绕一点旋转后不能与自身重合,故B不符合题意;C选项是等腰梯形,绕一点将等腰梯形旋转后不能与自身重合,故C不符合题意;D选项是圆,将圆绕圆心旋转后能与自身重合,故D符合题意故选:D【点睛】本题考查了中心对称图形,掌握中心对称图形的定义是解题的关键3. 下列运算正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据合并同类项、平方差公式、积的乘方,同底数幂的乘法进行计算,再得出选项即可【详解】解:A、,故原题计算错误,不符合题意;B、,故原题计算正
14、确,不符合题意;C、,故原题计算错误,不符合题意;D、,故原题计算错误,不符合题意;故选:B【点睛】此题主要考查了合并同类项、平方差公式、积的乘方,同底数幂的乘法,关键是掌握各计算法则4. 估计的值在( )A. 1到2之间B. 2到3之间C. 3到4之间D. 4到5之间【答案】A【解析】【分析】利用夹逼法进行无理数的估算即可求解【详解】,故选A【点睛】本题考查无理数的估算,熟练掌握知识点是解题的关键5. 如图,四边形与四边形位似,其位似中心为点,且,则四边形的周长与四边形的周长之比是( )A. B. C. D. 【答案】D【解析】【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质
15、解答【详解】四边形与四边形位似,位似中心点是点O,则故选:D【点睛】本题考查了位似概念、相似多边形的性质,注意:根据性质,周长的比等于相似比6. 已知甲码头与乙码头相距36千米,一轮船往返于甲,乙两码头之间,轮船由甲码头顺流而下到乙码头所用时间比逆流而上所用时间少2小时,已知水流速度为3千米/时,求船在静水中的速度,设船在静水中的速度为x千米/时,根据题意列方程为( )A. B. C. D. 【答案】B【解析】【分析】根据等量关系:轮船由甲码头顺流而下到乙码头所用时间比逆流而上所用时间少2小时,列方程即可【详解】解:依题意有:,故答案选:B【点睛】本题考查由实际问题抽象出分式方程,解答本题的关
16、键是明确题意,列出相应的方程7. 下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,第1个图形中小正方形的个数是3个,第2个图形中小正方形的个数是8个,第3个图形中小正方形的个数是15个,第9个图形中小正方形的个数是( )A. 100B. 99C. 98D. 80【答案】B【解析】【分析】根据图形间变化可得第n个图中小正方形的个数是,再代入进行计算即可【详解】解:第1个图中小正方形的个数是,第2个图中小正方形的个数是,第3个图中小正方形的个数是,第4个图中小正方形的个数是,第个图中小正方形的个数是,第9个图中小正方形的个数是故选:B【点睛】此题考查了图形变化类规律问题的解决
17、能力,关键是能根据图案变化观察、猜想、验证而得到此题蕴含的规律8. 如图,内接于,则的半径为( )A. 4B. C. D. 【答案】A【解析】【分析】根据圆内接四边形对角互补,作的圆周角,可求得、的度数,连接,过点作交于点,根据垂径定理可求得的度数与的长,最后利用锐角三角函数可求得半径的长【详解】解:作的圆周角,连接,过点作交于点,在中,即,解得:故选:A【点睛】本题考查了圆的内接四边形对角互补、垂径定理求圆的半径,掌握圆的内接四边形对角互补以及灵活运用垂径定理是解题的关键9. 如图,在平行四边形中,点E、F分别在的延长线上,则的长是( )A. B. C. 2D. 【答案】C【解析】【分析】证
18、明四边形是平行四边形,得到,则,在中,由勾股定理得【详解】解:四边形是平行四边形,四边形是平行四边形,在中,由勾股定理得,故选C【点睛】本题主要考查了平行四边形的性质与判定,勾股定理,证明四边形是平行四边形是解题的关键10. 在黑板上写下一列不同的自然数,允许擦去任意两个数,再写上它们两个数的和或差(前数后数),并放在这列数的最后面,重复这样的操作,直至在黑板上仅留下一个数为止,下列说法中正确的个数为( )写了2、3、4,按此操作,最后留下的那个数可能是5;写了1、3、5、7,按此操作,最后留下的那个数可能有16种不同的结果;写了1、2、319、20,按此操作,最后留下的那个数可能是A. 0B
19、. 1C. 2D. 3【答案】B【解析】【分析】按照题意直接判断即可;每轮操作减少一个数,共需要三轮才剩下一个数,4个数中选出2个数共有6种方法,补充的数为和或者差,此时又需要乘以2;3个数中选出2个数共有3种方法,补充的数为和或者差,此时又需要乘以2;2个数中选出2个数共有1种方法,补充的数为和或者差,此时又需要乘以2;每一轮都直接影响下一轮,据此即可作答;每次去掉两个最大的数,新加入的数为这两个数的和,依次类推,最后得到的两个数为:1和,据此问题得解【详解】2、3、4,去掉2、4,加入新数(),此时为3、;即最后留下的那个数可能是5,故正确;每轮操作减少一个数,共需要三轮才剩下一个数,4个
20、数中选出2个数共有6种方法,补充的数为两数的和或者差,此时又需要乘以2;3个数中选出2个数共有3种方法,补充的数为两数的和或者差,此时又需要乘以2;2个数中选出2个数共有1种方法,补充的数为两数的和或者差,此时又需要乘以2;每一轮都直接影响下一轮,即总的可能情况有:(种),即最后留下的那个数可能有144种不同的结果,故错误;除1之外,后面19个数的和为:,操作:每次去掉两个最大的数,新加入的数为这两个数的和,依次类推,最后得到的两个数为:1和,最后去掉1和,新加入的数为,即可知:是经过操作之后可能出现的最小的数,故最后结果不可能是,故错误,即正确的只有1个,为,故选:B【点睛】本题考查了有理数
21、的运算以及数字规律的探索,明确题意,是解答本题的关键二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上11. 计算:_【答案】【解析】【分析】直接利用三角函数值及非零数的零次方进行计算即可【详解】,故答案为【点睛】本题考查特殊角三角函数值及非零数的零次方,正确的计算是解题的关键12. 分解因式:3a26a+3=_【答案】3(a1)2【解析】【详解】解:原式=3(a22a+1)=3(a1)2故答案为:3(a1)2【点睛】本题考查提公因式法与公式法的综合运用13. 现有分别标有汉字“圆”“梦”“今”“夏”的四张卡片,它们除汉字外完全相同,若把四张卡片背
22、面朝上,洗匀后放在桌面上,然后随机抽出一张,不放回,再随机抽出一张,两次抽出的卡片上的汉字能组成“圆梦”的概率是_【答案】【解析】【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可【详解】“圆”“梦”“今”“夏”的四张卡片分别用表示,画树状图如图所示:由树状图可知,共有12种等可能的结果,其中两次抽出的卡片上的汉字能组成“圆梦”有2种,所以两次抽出的卡片上的汉字能组成“圆梦”的概率是,故答案为:【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;熟练掌握概率=所求情
23、况数与总情况数之比是解题的关键14. 如图,在平面直角坐标系xOy中,直线与反比例函数的图像交于点A,将直线沿y轴向上平移b个单位长度,交x轴于点C,交反比例函数图像于点B,若,则b的值为_【答案】【解析】【分析】解析式联立,解方程求得A的横坐标,根据定义求得B的纵坐标,把纵坐标代入反比例函数的解析式求得B的坐标,代入y=x+b即可求得b的值【详解】直线与反比例函数的图像交于点A,联立,解得或,过B作轴于将直线沿y轴向上平移b个单位长度,交x轴于点C,B的纵坐标为,把代入得,将直线沿y轴向上平移b个单位长度,得到直线,把代入得,求得,故答案为:【点睛】本题是反比例函数与一次函数的交点问题,考查
24、了反比例函数图像上点的坐标特征,一次函数的图像与几何变换,求得交点B的坐标是解题的关键15. 如图,在矩形中,以点C为圆心,为半径画弧,交边于点H,则图中阴影部分的面积是_【答案】【解析】【分析】阴影部分的面积=,根据题意知,则,进而求解即可【详解】解:在中,则阴影部分的面积=,故答案为:【点睛】此题主要考查了扇形面积求法,本题中能够将不规则图形的面积进行转换成规则图形的面积差是解题的关键16. 若数m使关于x的不等式组的解集为,且使关于y的分式方程的解为正数,则符合条件的所有整数m的和为_【答案】10【解析】【分析】根据不等式组的解集确定m的取值范围,再根据分式方程的解为正数,得出m的所有可
25、能的值,再进行计算即可【详解】解:解不等式得:, 解不等式得:,整数m使关于x的一元一次不等式组的解集是,解分式方程得:,且 ,分式方程的解是正数,且 ,为整数,符合条件的所有整数k的值之和为,故答案为:10【点睛】本题考查分式方程的整数解,解一元一次不等式组,掌握分式方程的解法、一元一次不等式组的解法,理解分式方程的整数解的意义是正确解答的前提17. 在中,点D是AB边上一点,连接CD,将沿CD翻折得到,其中与AB边交于点E,连接,则的长为_【答案】【解析】【分析】先求解,结合折叠性质可得:,证明,可得,可得,设,解得:,可得,过作于,求解,再结合勾股定理可得答案【详解】解:,是等边三角形,
26、结合折叠性质可得:,设,解得:,(经检验不合题意舍去),过作于,由可得:,故答案为:【点睛】本题考查的是轴对称的性质,勾股定理的应用,相似三角形的判定与性质,锐角三角函数的应用,灵活运用以上知识,作出适当的辅助线是解本题的关键18. 一个数位大于等于4的多位数n,规定其末三位数与末三位数以前的数字所组成的数之差记为,则_;若能被11整除,则这个多位数就一定能被11整除,反之,一个数位大于等于4的多位数n能被11整除,则n的末三位数与末三位数以前的数字所组成的数之差一定能被11整除若两个四位数s,t,其中s能被11整除,且,t的千位数字为,百位数字为4,十位数字为3,个位数字为(a,b,c均为整
27、数),规定,当时,则的最小值为_【答案】 . 13 . #【解析】【分析】先求出根据定义求出,即可求解;由题意可知, s,t均为四位数,由,得,在根据s能被11整除,得,则,即,再根据,为整数,可得,为整数,再结合可知当越大,越小,依次可求解【详解】解:由题意可得,;由题意可得:,s能被11整除,能被11整除,则能被11整除,t能被11整除,则,即:,能被11整除,且,为整数,则,即能被11整除,且,为整数,即:,整数,当越大,越小,即:当时,有最小值,故答案为:13;【点睛】此题主要考查了整除问题,能被11整除的数的特征,求出是解本题的关键三、解答题:(本大题共8个小题,19题8分,20-2
28、6每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上19. 计算(1)(2)【答案】(1) (2)【解析】【分析】(1)根据平方差公式与完全平方公式将原式展开,再合并同类项即可;(2)现将分式中多项式因式分解,以及通分括号里的式子,再根据分式的除法法则求解即可【小问1详解】解:原式【小问2详解】解:原式【点睛】本题考查了整式与分式的化简,需要熟练掌握平方差公式与完全平方公式,以及分式的混合运算,熟练掌握运算法则是解答本题的关键20. 如图所示,在正方形中,点M是对角线上的一个点连接,过点M作交于点N,过点M
29、作于点G,试说明,的数量关系解答思路是:过点M作垂线交于点F,构造与全等使得问题得到解决,请根据解答思路完成下面的作图与填空:(1)尺规作图:过点M作垂线交于点F(用基本作图,保留作图痕迹,不写作法,结论)(2)解:猜想:四边形是正方形,_,_四边形是正方形_在与中,_【答案】(1)见解析 (2);【解析】【小问1详解】解:如下图所示,【小问2详解】四边形是正方形,四边形是正方形在与中,【点睛】本题考查尺规作图、角平分线的性质和全等三角形的性质,解题的关键是熟练掌握全等三角形的相关知识21. 体育考试是九年级学生决胜中考的第一关,为了提升体育成绩,某校九年级学生加强了“开合跳”训练,为了了解学
30、生训练情况,从某校九年级随机抽取男生,女生各40名进行一分钟快速训练,并对训练结果进行整理,描述和分析,1分钟“开合跳”完成的个数用x表示,并分成了四个等级,其中A:,B:,C:,D:,下面给出了部分信息:女生1分钟“开合跳”个数扇形统计图;男生1分钟“开合跳”个数频数统计表等级ABCD频数16a83男生B组数据:从高到低排列,排在最后面的10个数据分别为:79,78,76,76,75,75,74,74,73,72男生和女生1分钟“开合跳”个数的平均数,中位数,众数,A等级所占百分比如下表:平均数众数中位数A等级所占百分比男生7888b40%女生78877830%根据以上信息,解答下列问题:(
31、1)_,_,_;(2)根据以上数据分析,你认为该校九年级的男生“开合跳”成绩更优异,还是女生“开合跳”成绩更优异?请说明理由(写出一条理由即可)(3)若该校九年级学生共1600名,估计九年级“开合跳”个数达到A等级的人数【答案】(1)20,13,78.5 (2)男生,理由见解析 (3)560人【解析】【分析】(1)用抽取的总人数减去A、B、D等级人数即可求得a值;根据中位数定义可求得b值;用1减去A、B、D等级百分比即可求得m%,从而得出m值(2)可比较中位数,众数与A等级点的百分比得出结论(3)利用样本估计总体可求解【小问1详解】解:,男生1分钟“开合跳”个数的中位数是第20和21人的平均数
32、,而男生A组16人,B组13人,男生1分钟“开合跳”个数的中位数在B组,又男生B组数据:从高到低排列,排在最后面的10个数据分别为:79,78,76,76,75,75,74,74,73,72所以中位数为,故答案为:20,13,78.5;【小问2详解】解:我认为男生“开合跳”成绩更好男生“开合跳”成绩中位数是78.5大于女生“开合跳”中位数是78(理由不唯一)【小问3详解】解:九年级“开合跳”A等级所占比例为:九年级“开合跳”个数达到A等级的人数约为:(人)【点睛】本题考查扇形统计图,频数分布表,中位数,众数,用样本估计总体,解题关键是从统计图表中获取有用信息是解题的关键22. “一年好景君须记
33、,最是橙黄橘绿时”,重庆柑橘在全国享有美誉,它们色泽橙黄艳丽,气味芬芳持久,汁水横溢,酸甜清新,我市柑橘植面积已连续多年全国第一2022年全国柑橘种植总面积为2400万亩,年总产量为2120万吨,我市柑橘平均亩产量为1800kg,国内其他地区柑橘的平均亩产量为700kg,请解答下列问题:(1)求我市2022年柑橘的种植面积是多少万亩;(2)2023年,若我市柑橘的平均亩产量仍保持1800kg不变,要使我市柑橘的年总产量不低于765万吨,那么2023年我市至少应再多种植多少万亩的柑橘?【答案】(1)400万亩 (2)25万亩【解析】【分析】(1)设2022年我市柑橘的种植面积为x万亩,再根据20
34、22年全国柑橘总产量列一元一次方程求解即可;(2)设2023年我市再多种m万亩柑橘,再根据2023年我市柑橘的年总产量不低于765万吨列一元一次不等式求解即可;【小问1详解】解:设2022年我市柑橘的种植面积为x万亩,国内其他地区柑橘的种植面积为万亩,由题意得:化简得:解得:答:2022年我市柑橘的种植面积为400万亩;【小问2详解】解:设2023年我市再多种m万亩柑橘,可使我市总产量不低于765万吨,由题意得:化简得:解得答:2023年我市至少再多种25万亩柑橘,可使我市总产量不低于765万吨【点睛】本题考查了一元一次方程和一元一次不等式的实际应用,根据题中等量关系和不等关系列出方程是解题关
35、键23. 如图所示,在一次海上救援演习中,游艇A按计划停泊在搜救艇B的南偏东30方向上,同时,在搜救艇B的正南方向,与搜救艇B相距40海里处还设置了另一支搜救艇C,此时游艇A在搜救艇C的东北方向上,随着演习正式开始,游艇A按计划向搜救艇B与C同时发出求救信号,并在原地等待救援(参考数据:,)(1)在演习正式开始前,搜救艇B与游艇A相距多少海里?(结果保留根号)(2)若搜救艇B与C同时收到游艇A的求救信号,它们同时出发实施救援行动,搜救艇B沿BA行驶,搜救艇C西东沿CA行驶,其中搜救艇B的速度为每小时25海里,搜救艇C的速度为每小时16海里,请通过计算判断哪支搜救艇先到达游艇A的所在地?【答案】
36、(1)海里; (2)搜救艇B先到达游艇A的所在地【解析】【分析】(1)利用两个特殊角作出垂直,得到边长关系,设元计算即可;(2)利用(1)中求得的线段长度和给出的速度,分别求出搜救艇B、C的到达时间,比较大小,时间小的先到达【小问1详解】过点A作于点D,则,在中,在中,设,则,由题意得,解得,答:在演习正式开始前,搜救艇B与游艇A相距海里;【小问2详解】由(1)得,搜救艇B沿BA行驶,所用时间为小时;搜救艇C沿CA行驶,所用时间小时;,故搜救艇B比搜救艇C先到达游艇A的所在地【点睛】本题考查实际勾股定理解决实际问题,利用特殊角度作垂直得到特殊直角三角形边长关系是解题的关键24. 如图1,在矩形
37、中,动点P以每秒1个单位的速度,从点A出发,按的顺序在边上运动与点P同时出发的动点Q以每秒个单位的速度,从点D出发,在射线上运动当动点P运动到点D时,动点P、Q都停止运动在运动路径上,设点P的运动时间为t秒,此时点P、点B之间的路径距离与点P、点C之间的路径距离之和为,动点Q的运动路程为(1)分别求出,与t之间的函数关系式,并写出自变量t的取值范围;(2)在如图2的平面直角坐标系中,画出,的函数图象,并根据图象写出函数的一条性质:_;(3)根据图象直接写出当时,t的取值范围_【答案】(1), (2)图见解析,当时,随t的增大而减小;当时,随t的增大而不变;当时,随t的增大而增大;函数是轴对称图
38、象,对称轴是直线 (3)【解析】【分析】(1)根据题意可分当P在上,当P在上,当P在上,然后分类求解即可;(2)根据(1)可直接进行作图,然后根据图象可进行求解;(3)把函数向上平移一个单位长度,进而根据函数图象可进行求解小问1详解】解:由题意得:当P在上,即时,则有:,;当P在上,即时,则有:;当P在上,即时,;综上,;小问2详解】解:函数图象如下所示:当时,随t的增大而减小;当时,随t的增大而不变;当时,随t的增大而增大;【小问3详解】解:把函数向上平移一个单位长度,如图所示,根据图象可知当时,则有;故答案为【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键
39、25. 如图,抛物线与x轴交于点、B,与y轴交于点C,抛物线的对称轴为直线,点D是抛物线的顶点(1)求抛物线的解析式;(2)过点A作交对称轴于点F,在直线下方对称轴右侧的抛物线上有一动点P,过点P作轴交直线于点Q,过点P作交于点E,求最大值及此时点P的坐标;(3)将原抛物线沿着x轴正方向平移,使得新抛物线经过原点,点M是新抛物线上一点,点N是平面直角坐标系内一点,是否存在以B、C、M、N为顶点的四边形是以为对角线的菱形,若存在,求所有符合条件的点N的坐标【答案】(1); (2)的最大值为,此时; (3)存在,或【解析】【分析】(1)代入法求解即可;(2)由(1)和题意可求得与关于x轴对称得,设
40、直线方程为:,则解析式为,设,求得,则,结合二次函数的性质可知当时,的最大值为,此时;(3)平移后抛物线过原点,则抛物线向右平移个单位,得以B、C、M、N为顶点的四边形是以为对角线的菱形,由(1)得,取中点,则求得直线解析式为,联立有,解得,得或,结合中点坐标可求得或【小问1详解】解:抛物线过,对称轴,解得:;抛物线解析式为:;【小问2详解】由(1)可知当时,顶点, ,与关于x轴对称,设直线方程为:,则有:,解得:,解析式为,设,则,开口向下,对称轴在范围内,当时,的最大值为,此时;【小问3详解】平移后抛物线过原点,则抛物线向右平移个单位,得,即为,以B、C、M、N为顶点的四边形是以为对角线的
41、菱形,由(1)得,取中点,则,作的中垂线分别交x轴、y轴于Q、P,则,设直线方程为:,则有:,解得:,解析式为,联立有,解得:,当时代入求得,当时代入求得,或, 是中点,设,则有:或,解得:或,或【点睛】本题考查了代入法求函数解析式,二次函数的图象和性质,一次函数与二次函数交点问题,菱形的性质,相似三角形的判定和性质的应用;解题的关键是熟练掌握相关性质并灵活运用26. 在等腰三角形中,点E为上一点,连接(1)如图1,若,过点C作交BE延长线于点D,连接,过点A作交于点F,连接,求证:;(2)如图2,过A作交延长线于点D,将绕着点A逆时针旋转至,连接,使得于点G,与交于点M,若点M为的中点,且,
42、猜想线段与之间的数量关系,并证明你的猜想;(3)如图3,若,将沿着翻折得到(),点落在BE延长线上,交于点P,点Q、R分别是射线、上的点,连接、,满足,当取得最大值时,直接写出的最小值的平方【答案】(1)见解析 (2),证明见解析 (3)【解析】【分析】(1)利用边角条件证明,得到与的关系,再利用直角三角形三边勾股定理得到;(2)通过和点M为的中点得到,再通过计算角度和边长关系得到,得到,然后计算角度得到,得到,最后转换边长得到;(3)利用四点共圆找到最大位置,求出点P位置,构造相似找出Q、R的位置及关系,找到的线段,利用动点Q得到的最值位置,最后利用特殊角构造直角三角形求解即可【小问1详解】,又,又,;【小问2详解】连接,设,又,