欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    1.2《一定是直角三角形吗》课件

    • 资源ID:39676       资源大小:807KB        全文页数:25页
    • 资源格式: PPT        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1.2《一定是直角三角形吗》课件

    1、1.2 一定是直角三角形吗,第一章 勾股定理,八年级数学北师版,情境引入,学习目标,1.了解直角三角形的判定条件(重点) 2.能够运用勾股数解决简单实际问题 (难点),导入新课,问题:同学们你们知道古埃及人用什么方法得到直角的吗?,用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第9个结,拉紧绳子就得到一个直角三角形, 其直角在第1个结处.,讲授新课,探究:下面有三组数分别是一个三角形的三边长a, b, c: 5,12,13; 7,24,25; 8,15,17. 回答下列问题: 1.这三组数都满足 a2+b2=c2吗? 2.分别

    2、以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?,实验结果: 5,12,13满足a2+b2=c2,可以构成直角三角形; 7,24,25满足a2+b2=c2,可以构成直角三角形; 8,15,17满足a2+b2=c2 ,可以构成直角三角形.,思考:从上述问题中,能发现什么结论吗?,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.,有同学认为测量结果可能有误差,不同意这个发现.你觉得这个发现正确吗?你能给出一个更有说服力的理由吗?,?,已知:如图,ABC的三边长a,b,c,满足a2+b2=c2 求证:ABC是直角三角形,构造两直角边分别为a,b的RtA

    3、BC,证明结论,简要说明: 作一个直角MC1N, 在C1M上截取C1B1=a=CB, 在C1N上截取C1A1=b=CA, 连接A1B1.,在RtA1C1B1中,由勾股定理,得A1B12=a2+b2=AB2 . A1B1=AB , ABC A1B1C1 . (SSS) C=C1=90, ABC是直角三角形.,a,c,b,A,C,B,勾股定理的逆定理,归纳总结,如果三角形的三边长a 、b 、c 满足a2+b2=c2 那么这个三角形是直角三角形.,勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角 ,最长边所对角为直角.

    4、,特别说明:,典例精析,例1:一个零件的形状如图1所示,按规定这个零件中A和DBC都应为直角,工人师傅量得这个零件各边的尺寸如图2所示,这个零件符合要求吗?,D,A,B,C,4,3,5,13,12,D,A,B,C,图1,图2,在BCD中, 所以BCD 是直角三角形,DBC是直角. 因此,这个零件符合要求.,解:在ABD中, 所以ABD 是直角三角形,A是直角.,例2 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?,(1) a=15 , b=8 ,c=17;,解:因为152+82=289,172=289,所以152+82=172,根据勾股定理的逆定理,这个三角形是直

    5、角三角形,且C是直角.,(2) a=13 , b=14 , c=15;,解:因为132+142=365,152=225,所以132+142152,不符合勾股定理的逆定理,所以这个三角形不是直角三角形.,(3) a:b: c=3:4:5;,解:设a=3k,b=4k,c=5k, 因为(3k)2+(4k)2=25k2,(5k)2=25k2, 所以(3k)2+(4k)2=(5k)2,根据勾股定理的逆定理,这个三角形是直角三角形,C是直角.,变式1: 已知ABC,AB=n-1,BC=2n,AC=n+1(n为 大于1的正整数).试问ABC是直角三角形吗?若是, 哪一条边所对的角是直角?请说明理由,解:AB

    6、+BC=(n-1)+(2n)=n4 -2n+1+4n=n4 +2n+1=(n+1)=AC, ABC直角三角形,边AC所对的角是直角.,先确定AB、BC、AC、 的大小,变式2: 若三角形ABC的三边 a,b,c 满足a2+b2+c2+50=6a+8b+10c. 试判断ABC的形状.,解: a2+b2+c2+50=6a+8b+10c a26a+9+b28b+16+c210c+25=0.即 (a3)+ (b4)+ (c5)=0. a=3, b=4, c=5即 a2+b2+c2.ABC直角三角形.,例3 在正方形ABCD中,F是CD的中点,E为BC上一点,且CE CB,试判断AF与EF的 位置关系,

    7、并说明理由,解:AFEF.设正方形的边长为4a, 则ECa,BE3a,CFDF2a. 在RtABE中,得AE2AB2BE216a29a225a2. 在RtCEF中,得EF2CE2CF2a24a25a2. 在RtADF中,得AF2AD2DF216a24a220a2. 在AEF中,AE2EF2AF2, AEF为直角三角形,且AE为斜边 AFE90,即AFEF.,如果三角形的三边长a,b,c满足a2+b2=c那么这个三角形是直角三角形. 满足a2+b2=c2的三个正整数,称为勾股数.,概念学习,常见勾股数:,3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;1

    8、0,24,26等等.,勾股数拓展性质:,一组勾股数,都扩大相同倍数k,得到一组新数,这组数同样是勾股数.,例4:下列各组数是勾股数的是( ) A.6,8,10 B.7,8,9C.0.3,0.4,0.5 D.52,122,132,A,方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.,当堂练习,1.如果线段a,b,c能组成直角三角形,则它们的比可以是 ( )A.3:4:7 B.5:12:13 C.1:2:4 D.1:3:5,将直角三角形的三边长扩大同样的倍数,则得到 的三角形 ( ) A.是直角三角形 B.可能是锐角三角形 C.可能是钝角

    9、三角形 D.不可能是直角三角形,B,A,4.如果三条线段a,b,c满足a2=c2-b2,这三条线段组成的三角形是直角三角形吗?为什么?,解:是直角三角形.因为a2+b2=c2满足勾股定理的逆定理.,3.以ABC的三条边为边长向外作正方形, 依次得到的面积是25, 144 , 169, 则这个三角形是_三角形.,直角,5.如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?与你的同伴交流.,解:ABE,DEF,FCB均为直角三角形.由勾股定理知BE2=22+42=20, EF2=22+12=5,BF2=32+42=25,BE2+EF2=BF2, BEF是

    10、直角三角形.,6.如图,四边形ABCD中,ABAD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积.,解:连接BD. 在RtABD中,由勾股定理, 得 BD2=AB2+AD2,BD=5m, 又 CD=12cm,BC=13cm BC2=CD2+BD2,BDC是直角三角形. S四边形ABCD=SRtBCDSRtABD= BDCD ABAD= (51234)=24 m2,C,B,A,D,变式:如图,在四边形ABCD中,ACDC,ADC的面积为30 cm2,DC12 cm,AB3 cm,BC4 cm,求ABC的面积.,解: SACD=30 cm2,DC12 cm. AC=5 cm, 又 ABC是直角三角形, B是直角. ,一定是直角三角形吗,勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2, 那么这个三角形是直角三角形.,课堂小结,勾股数:满足a2+b2=c2的三个正整数,


    注意事项

    本文(1.2《一定是直角三角形吗》课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开