1、*5.8 三元一次方程组,第五章 二元一次方程组,八年级数学北师版,学习目标,1.理解三元一次方程组的概念 2.能解简单的三元一次方程组,导入新课,回顾与思考,1.解二元一次方程组有哪几种方法?,2.解二元一次方程组的基本思路是什么?,二元一次方程组,代入,加减,消元,一元一次方程,化未知为已知,化归转化思想,代入消元法和加减消元法,消元法,讲授新课,问题:已知甲、乙、丙三数的和是23,甲数比乙数大1,甲数的两倍与乙数的和比丙数大20,求这三个数.,上述问题中,设甲数为x,乙数为y,丙数为z,由题意可得到方程组:,这个方程组和前面学过的二元一次方程组有什么区别和联系?,在这个方程组中,x+y+
2、z=23和2x+y-z=20都含有三个未知数,并且所含未知数的项的次数都是1,这样的方程叫做三元一次方程.,总结归纳,像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组.,三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.,怎样解三元一次方程组呢?,能不能像以前一样“消元”,把“三元”化成“二元”呢?,典例精析,例1:解方程组,解:由方程得 x=y+1 把分别代入得 2y+z=22 3y-z=18 解由组成的二元一次方程组,得y=8,z=6把y=8代入,得x=9所以原方程的解是,x=9 y=8 z=6,总结归纳,解三元一次方程组的基本思路是:通过“代入”或“
3、加减”进行 ,把 转化为 ,使解三元一次方程组转化为解 ,进而再转化为解 .,消元,消元,消元,“三元”,“二元”,二元一次方程组,一元一次方程,解方程组,解:将分别代入得 2y+z=22 3y-z=18 解由组成的二元一次方程组,得y=3, z=2把y=3, z=2代入,得x=5.所以原方程的解是,x=5,y=3, z=2.,练一练,例2:在等式 y=ax2bxc中,当x=1时,y=0;当x=2时,y=3;当x=5时,y=60. 求a,b,c的值.,解:根据题意,得三元一次方程组,abc= 0, 4a2bc=3, 25a5bc=60. ,, 得 ab=1 ,,得 4ab=10 ,与组成二元一
4、次方程组,ab=1, 4ab=10.,a=3, b=-2.,解这个方程组,得,把 代入,得,a=3, b=-2,c=-5,a=3, b=-2, c=-5.,因此,当堂练习,1.解方程组 ,则x_,y_,z_.,xyz11,,yzx5,,zxy1., ,【解析】通过观察未知数的系数,可采取 +求出y, + 求出z,最后再将y与z的值代入任何一个方程求出x即可.,6,8,3,2.若x2y3z10,4x3y2z15,则xyz的值为( ) A.2 B.3 C.4 D.5,解析: 通过观察未知数的系数,可采取两个方程相加得,5x+5y+5z=25,所以x+y+z=5.,D,3.若|ab1|(b2ac)2|2cb|0,求a,b,c的值,解:因为三个非负数的和等于0,所以每个非负数都为0. 可得方程组 解得,4.一个三位数,十位上的数字是个位上的数字的 ,百位上的数字与十位上的数字之和比个位上的数字大1.将百位与个位上的数字对调后得到的新三位数比原三位数大495,求原三位数,解:设原三位数百位、十位、个位上的数字分别为x、y、z. 由题意,得解得 答:原三位数是368.,三元一次方程组,三元一次方程组的概念,课堂小结,三元一次方程组的解法,