欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    4.7相似三角形中的对应线段之比(第1课时)课件

    • 资源ID:39813       资源大小:909KB        全文页数:31页
    • 资源格式: PPT        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    4.7相似三角形中的对应线段之比(第1课时)课件

    1、4.7 相似三角形的性质,第四章 图形的相似,第1课时 相似三角形中的对应线段之比,导入新课,讲授新课,当堂练习,课堂小结,1.明确相似三角形中对应线段与相似比的关系. (重点) 2.能熟练运用相似三角形的性质解决实际问题(难点),学习目标,问题1: ABC与A1B1C1相似吗?,导入新课,相似三角形对应角相等、对应边成比例.,ABC A1B1C1,思考:三角形中,除了角度和边长外,还有哪些几何量?,高、角平分线、中线的长度,周长、面积等,1.CD和C1D1分别是它们的高,你知道 比值是多少吗?,2.如果CD和C1D1分别是他们的对应角平分线呢?3.如果CD和C1D1分别是他们的对应中线呢?,

    2、量一量,猜一猜,ABC A1B1C1, ,CD和C1D1分别是它们的高, 你知道 等于多少吗?,讲授新课,证明:, ABCABC,, B= B,又 ADB =ADB =90,ABDABD (两角对应相等的两个三角形相似).,由此得到:相似三角形对应高的比等于相似比,类似的,我们可以得到其余两组对应边上的高的比也等于相似比,如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,ABCD,AB=2m,CD=4m,点P到CD的距离是3m,则P到AB的距离是 m.,1.5,例1:如图,AD是ABC的高,点P,Q在BC边上,点R在AC边上,点S在AB边上,BC=60cm,AD=40cm,四边形PQR

    3、S是正方形.,(1)AE是 ASR的高吗?为什么?,(2) ASR与ABC相似吗?为什么?,(3)求正方形PQRS的边长.,(1)AE是ASR的高吗?为什么?,解: AE是ASR的高. 理由如下:AD是ABC的高, ADC=90 .,四边形PQRS是正方形SR BCAER=ADC=90 , AE是ASR的高.,BC=60cm,AD=40cm,四边形PQRS是正方形.,BC=60cm,AD=40cm,四边形PQRS是正方形.,(2) ASR与ABC相似吗?为什么?,解: ASR与ABC相似 . 理由如下: SRBC, ASRABC.,BC=60cm,AD=40cm,四边形PQRS是正方形.,(3

    4、)求正方形PQRS的边长.,是方程思想哦!,解: ASR ABCAE、AD分别是ASR 和ABC对应边上的高 设正方形PQRS的边长为xcm,则SR=DE=xcm AE=(40-x)cm 解得x=24.正方形PQRS的边长为24cm.,变式一:,如图,AD是ABC的高,点P,Q在BC边上,点R在AC边上,点S在AB边上,BC=5cm,AD=10cm,若矩形PQRS的长是宽的2倍,你能求出这个矩形的面积吗?,如图,AD是ABC的高,BC=5cm,AD=10cm.,设SP=xcm,则SR=2xcm得到: 所以 x=2 2x=4S矩形PQRS= 24=8cm2,分析: 情况一:SR=2SP,设SR=

    5、xcm,则SP=2xcm得到: 所以 x=2.5 2x=5 S矩形PQRS=2.55=12.5cm2,原来是分类思想呀!,分析: 情况二:SP=2SR,如图,AD是ABC的高,BC=5cm,AD=10cm,问题:把上图中的高改为中线、角平分线,那么它们对应中线的比,对应角平分线的比等于多少?,图中ABC和ABC相似,AD、AD分别为对应边上的中线,BE、BE分别为对应角的角平分线,那么它们之间有什么关系呢?,已知:ABCABC,相似比为k,即 求证:证明: ABCABC, ABC= ABC, BAC= BAC又BE,BE分别为对应角的平分线, ABEABE.,由此得到:相似三角形对应的中线的比

    6、也等于相似比,同学们可以试着自己用同样的方法求证三角形对应边上的角平分中线的比等于相似比,已知:ABCABC,相似比为k,即 求证:证明: ABCABC. ABC= ABC, 又AD,AD分别为对应边的中线. ABDABD.,相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比,例2:两个相似三角形的两条对应边的长分别是6cm和8cm,如果它们对应的两条角平分线的和为42cm,那么这两条角平分线的长分别是多少?,解:设较短的角平分线长为xcm, 则由相似性质有 解得x18. 较长的角平分线长为24cm. 故这两条角平分线的长分别为18cm,24cm.,ABC A1B1C1 ,BD和

    7、B1D1是它们的中线,已知 ,B1D1 =4cm,则BD= cm.,6,2.ABC A1B1C1, AD和A1D1是对应角平分线,已知AD=8cm, A1D1=3cm ,则 ABC与A1B1C1的对应高之比为 .,8:3,3两个相似三角形对应中线的比为 , 则对应高的比为_ .,当堂练习,2.相似三角形对应边的比为23,那么对应角的角平分线的比为_.,2 3,1两个相似三角形的相似比为 , 则对应高的比为_, 则对应中线的比为_.,解: ABCDEF,,解得,EH3.2(cm).,答:EH的长为3.2cm.,(相似三角形对应角平 线的比等于相似比),,4.已知ABCDEF,BG、EH分ABC和

    8、DEF的角平分线,BC=6cm,EF=4cm,BG=4.8cm.求EH的长.,5.如图,AD是ABC的高,AD=h, 点R在AC边上,点S在AB边上,SRAD,垂足为E.当 时,求DE的长.如果 呢?,ASRABC (两角分别相等的两个三角形相似).,解:SRAD,BCAD,,D,S,SRBC.,ASR=B,ARS=C.,(相似三角形对应高的比等于相似比),,当 时,得 解得,D,S,当 时,得 解得,选做题:,6. 一块直角三角形木板的一条直角边AB长为1.5m,面积为1.5m2,要把它加工成一个面积尽可能大的正方形桌面,甲乙两位同学的加工方法如图(1)、(2)所示,请你用学过的知识说明哪位同学的加工方法更好。(加工损耗忽略不计,计算结果中的分数可保留),相信自己是最棒的!,7.AD是ABC的高,BC=60cm,AD=40cm,求图中小正方形的边长.,拓展延伸,相似三角形的性质,相似三角形对应高的比等于相似比,课堂小结,相似三角形对应角平分线的比等于相似比,相似三角形对应中线的比等于相似比,


    注意事项

    本文(4.7相似三角形中的对应线段之比(第1课时)课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开