欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    山东省枣庄市2016年中考数学试卷及答案解析

    • 资源ID:4382       资源大小:582.50KB        全文页数:33页
    • 资源格式: DOC        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    山东省枣庄市2016年中考数学试卷及答案解析

    1、第 1 页(共 33 页)2016 年山东省枣庄市中考数学试卷一、选择题:本大题共 12 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得 3 分,选错、不选或选出的答案超过一个均计零分。1下列计算,正确的是( )Aa 2a2=2a2Ba 2+a2=a4C( a2) 2=a4D(a+1) 2=a2+12如图,AOB 的一边 OA 为平面镜,AOB=3736,在 OB 上有一点 E,从 E 点射出一束光线经 OA 上一点 D 反射,反射光线 DC 恰好与 OB 平行,则 DEB 的度数是( )A7536 B7512 C74 36 D74123某中学篮球队 12

    2、 名队员的年龄如表:年龄(岁)13 14 15 16人数 1 5 4 2关于这 12 名队员年龄的年龄,下列说法错误的是( )A众数是 14 B极差是 3 C中位数是 14.5 D平均数是 14.84如图,在ABC 中,AB=AC ,A=30 ,E 为 BC 延长线上一点,ABC 与ACE 的平分线相交于点 D,则D 的度数为( )A15 B 17.5 C20 D 22.55已知关于 x 的方程 x2+3x+a=0 有一个根为 2,则另一个根为( )第 2 页(共 33 页)A5 B1 C 2 D56有 3 块积木,每一块的各面都涂上不同的颜色,3 块的涂法完全相同,现把它们摆放成不同的位置(

    3、如图),请你根据图形判断涂成绿色一面的对面的颜色是( )A白 B红 C黄 D黑7如图,ABC 的面积为 6,AC=3,现将ABC 沿 AB 所在直线翻折,使点 C 落在直线AD 上的 C处,P 为直线 AD 上的一点,则线段 BP 的长不可能是( )A3 B4 C 5.5 D108若关于 x 的一元二次方程 x22x+kb+1=0 有两个不相等的实数根,则一次函数 y=kx+b 的大致图象可能是( )A B C D9如图,四边形 ABCD 是菱形,AC=8,DB=6 ,DH AB 于 H,则 DH 等于( )A B C5 D4第 3 页(共 33 页)10已知点 P(a+1, +1)关于原点的

    4、对称点在第四象限,则 a 的取值范围在数轴上表示正确的是( )A BC D11如图,AB 是 O 的直径,弦 CDAB,CDB=30,CD=2 ,则阴影部分的面积为( )A2 B C D12如图,已知二次函数 y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c 0,ab, 4acb20;其中正确的结论有( )A1 个 B2 个 C3 个 D4 个二、填空题:本大题共 6 小题,满分 24 分,只填写最后结果,每小题填对得 4 分。13计算: 21+ |2|= 14如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4 米,AB=8 米,MA

    5、D=45 , MBC=30,则警示牌的高 CD 为 米(结果精确到0.1 米,参考数据: =1.41, =1.73)第 4 页(共 33 页)15如图,在半径为 3 的O 中,直径 AB 与弦 CD 相交于点 E,连接 AC,BD,若AC=2,则 tanD= 16如图,点 A 的坐标为( 4,0),直线 y= x+n 与坐标轴交于点 B、C,连接 AC,如果ACD=90 ,则 n 的值为 17如图,在ABC 中, C=90,AC=BC= ,将 ABC 绕点 A 顺时针方向旋转 60到ABC的位置,连接 CB,则 CB= 18一列数 a1,a 2,a 3,满足条件: a1= ,a n= (n 2

    6、,且 n 为整数),则a2016= 三、解答题:本大题共 7 小题,满分 60 分,解答时,要写出必要的文字说明、证明过程或演算步骤。第 5 页(共 33 页)19先化简,再求值: ,其中 a 是方程 2x2+x3=0 的解20P n 表示 n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么 Pn 与 n 的关系式是:P n= (n 2an+b)(其中 a,b 是常数,n4)(1)通过画图,可得:四边形时,P 4= ;五边形时,P 5= (2)请根据四边形和五边形对角线交点的个数,结合关系式,求 a,b 的值21小军同学在学校组织的社会实践活动中,负责了解他所居住的小

    7、区 450 户具名的生活用水情况,他从中随机调查了 50 户居民的月均用水量(单位:t),并绘制了样本的频数分布表:月均用水量2x3 3x4 4x5 5x6 6x7 7x8 8x9频数 2 12 10 3 2百分比 4% 24% 30% 20% 6% 4%(1)请根据题中已有的信息补全频数分布: , , ;(2)如果家庭月均用水量在 5x8 范围内为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)记月均用水量在 2x3 范围内的两户为 a1,a 2,在 7x8 范围内的 3 户b1、b 2、b 3,从这 5 户家庭中任意抽取 2 户,试完成下表,并求出抽取出的 2 户

    8、家庭来自不同范围的概率a1 a2 b1 b2 b3a1a2b1b2b322如图,在矩形 OABC 中,OA=3,OC=2,F 是 AB 上的一个动点(F 不与 A,B 重合),过点 F 的反比例函数 y= (k0)的图象与 BC 边交于点 E第 6 页(共 33 页)(1)当 F 为 AB 的中点时,求该函数的解析式;(2)当 k 为何值时,EFA 的面积最大,最大面积是多少?23如图,AC 是 O 的直径,BC 是O 的弦,点 P 是 O 外一点,连接PB、AB,PBA=C(1)求证:PB 是O 的切线;(2)连接 OP,若 OPBC,且 OP=8,O 的半径为 2 ,求 BC 的长24如图

    9、,把EFP 放置在菱形 ABCD 中,使得顶点 E, F,P 分别在线段 AB,AD ,AC上,已知 EP=FP=6,EF=6 ,BAD=60,且 AB6 (1)求EPF 的大小;(2)若 AP=10,求 AE+AF 的值;(3)若EFP 的三个顶点 E、 F、P 分别在线段 AB、AD、AC 上运动,请直接写出 AP 长的最大值和最小值25如图,已知抛物线 y=ax2+bx+c(a0)的对称轴为直线 x=1,且抛物线经过A(1,0),C(0,3)两点,与 x 轴交于点 B(1)若直线 y=mx+n 经过 B、C 两点,求直线 BC 和抛物线的解析式;第 7 页(共 33 页)(2)在抛物线的

    10、对称轴 x=1 上找一点 M,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;(3)设点 P 为抛物线的对称轴 x=1 上的一个动点,求使BPC 为直角三角形的点 P 的坐标第 8 页(共 33 页)2016 年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共 12 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得 3 分,选错、不选或选出的答案超过一个均计零分。1下列计算,正确的是( )Aa 2a2=2a2Ba 2+a2=a4C( a2) 2=a4D(a+1) 2=a2+1【考点】幂的乘方与积的乘方;合并同类项;同底

    11、数幂的乘法;完全平方公式【分析】根据同底数幂相乘判断 A,根据合并同类项法则判断 B,根据积的乘方与幂的乘方判断 C,根据完全平方公式判断 D【解答】解:A、a 2a2=a4,故此选项错误;B、a 2+a2=2a2,故此选项错误;C、(a 2) 2=a4,故此选项正确;D、(a+1) 2=a2+2a+1,故此选项错误;故选:C【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键2如图,AOB 的一边 OA 为平面镜,AOB=3736,在 OB 上有一点 E,从 E 点射出一束光线经 OA 上一点 D 反射,反射光线 DC 恰好与 OB 平行,则 DEB 的度

    12、数是( )A7536 B7512 C74 36 D7412【考点】平行线的性质;度分秒的换算第 9 页(共 33 页)【分析】过点 D 作 DFAO 交 OB 于点 F根据题意知, DF 是CDE 的角平分线,故1=3;然后又由两直线 CDOB 推知内错角1= 2;最后由三角形的内角和定理求得DEB 的度数【解答】解:过点 D 作 DFAO 交 OB 于点 F入射角等于反射角,1=3,CDOB,1=2(两直线平行,内错角相等);2=3(等量代换);在 RtDOF 中, ODF=90,AOB=3736,2=903736=5224;在 DEF 中, DEB=18022=7512故选 B【点评】本题

    13、主要考查了平行线的性质解答本题的关键是根据题意找到法线,然后由法线的性质来解答问题3某中学篮球队 12 名队员的年龄如表:年龄(岁)13 14 15 16人数 1 5 4 2关于这 12 名队员年龄的年龄,下列说法错误的是( )A众数是 14 B极差是 3 C中位数是 14.5 D平均数是 14.8【考点】极差;加权平均数;中位数;众数【分析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案【解答】解:由图表可得:14 岁的有 5 人,故众数是 14,故选项 A 正确,不合题意;第 10 页(共 33 页)极差是:1613=3,故选项 B 正确,不合题意;中位数是:14.5,故选项

    14、 C 正确,不合题意;平均数是:(13+145+154+162)12 14.5,故选项 D 错误,符合题意故选:D【点评】此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键4如图,在ABC 中,AB=AC ,A=30 ,E 为 BC 延长线上一点,ABC 与ACE 的平分线相交于点 D,则D 的度数为( )A15 B 17.5 C20 D 22.5【考点】等腰三角形的性质【分析】先根据角平分线的定义得到1= 2,3= 4,再根据三角形外角性质得1+2=3+4+A,1=3+D,则 21=23+A,利用等式的性质得到D= A,然后把A 的度数代入计算即可【解答】解:AB

    15、C 的平分线与 ACE 的平分线交于点 D,1=2,3=4,ACE=A+ABC,即1+2=3+4+ A,21=23+A,1=3+D,第 11 页(共 33 页)D= A= 30=15故选 A【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是 180和三角形外角性质进行分析5已知关于 x 的方程 x2+3x+a=0 有一个根为 2,则另一个根为( )A5 B1 C 2 D5【考点】根与系数的关系【分析】根据关于 x 的方程 x2+3x+a=0 有一个根为 2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【解答】解:关于 x 的方程 x2+3x+a=0 有一

    16、个根为2,设另一个根为 m,2+m= ,解得,m=1,故选 B【点评】本题考查根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数6有 3 块积木,每一块的各面都涂上不同的颜色,3 块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是( )A白 B红 C黄 D黑【考点】专题:正方体相对两个面上的文字【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论【解答】解:涂有绿色一面的邻边是白,黑,红,蓝,涂成绿色一面的对面的颜色是黄色,故选 C第 12 页(共 33 页)【点评】本题考查了正方体相对两个面上的文字问题,

    17、此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力7如图,ABC 的面积为 6,AC=3,现将ABC 沿 AB 所在直线翻折,使点 C 落在直线AD 上的 C处,P 为直线 AD 上的一点,则线段 BP 的长不可能是( )A3 B4 C 5.5 D10【考点】翻折变换(折叠问题)【分析】过 B 作 BNAC 于 N,BMAD 于 M,根据折叠得出C AB=CAB,根据角平分线性质得出 BN=BM,根据三角形的面积求出 BN,即可得出点 B 到 AD 的最短距离是 4,得出选项即可【解答】解:如图:过 B 作 BNAC 于 N,BMAD

    18、 于 M,将 ABC 沿 AB 所在直线翻折,使点 C 落在直线 AD 上的 C处,CAB=CAB,BN=BM,ABC 的面积等于 6,边 AC=3, ACBN=6,BN=4,BM=4,即点 B 到 AD 的最短距离是 4,BP 的长不小于 4,即只有选项 A 的 3 不正确,故选 A第 13 页(共 33 页)【点评】本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解此题的关键是求出 B 到 AD 的最短距离,注意:角平分线上的点到角的两边的距离相等8若关于 x 的一元二次方程 x22x+kb+1=0 有两个不相等的实数根,则一次函数 y=kx+b 的大致图象可能是( )A B C

    19、D【考点】根的判别式;一次函数的图象【分析】根据一元二次方程 x22x+kb+1=0 有两个不相等的实数根,得到判别式大于 0,求出 kb 的符号,对各个图象进行判断即可【解答】解:x 22x+kb+1=0 有两个不相等的实数根,=44(kb+1)0,解得 kb0,Ak0,b0,即 kb0,故 A 不正确;Bk0,b0,即 kb0,故 B 正确;Ck0,b0,即 kb0,故 C 不正确;Dk0,b=0 ,即 kb=0,故 D 不正确;故选:B第 14 页(共 33 页)【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式的关系:(1) 0方程有两个不相等的实

    20、数根;(2)=0 方程有两个相等的实数根;(3)0方程没有实数根9如图,四边形 ABCD 是菱形,AC=8,DB=6 ,DH AB 于 H,则 DH 等于( )A B C5 D4【考点】菱形的性质【分析】根据菱形性质求出 AO=4,OB=3,AOB=90,根据勾股定理求出 AB,再根据菱形的面积公式求出即可【解答】解:四边形 ABCD 是菱形,AO=OC,BO=OD ,AC BD,AC=8,DB=6,AO=4,OB=3,AOB=90,由勾股定理得:AB= =5,S 菱形 ABCD= , ,DH= ,故选 A第 15 页(共 33 页)【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性

    21、质得出 S 菱形 ABCD=是解此题的关键10已知点 P(a+1, +1)关于原点的对称点在第四象限,则 a 的取值范围在数轴上表示正确的是( )A B C D【考点】关于原点对称的点的坐标;在数轴上表示不等式的解集【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案【解答】解:点 P(a+1, +1)关于原点的对称点坐标为:(a 1, 1),该点在第四象限, ,解得:a1,则 a 的取值范围在数轴上表示为:故选:C【点评】此题主要考查了关于原点对称点的性质以及不等式组的解法,正确得出关于 a 的不等式组是解题关键11如图,AB 是 O 的直径,弦 CDAB,CD

    22、B=30,CD=2 ,则阴影部分的面积为( )第 16 页(共 33 页)A2 B C D【考点】扇形面积的计算【专题】探究型【分析】要求阴影部分的面积,由图可知,阴影部分的面积等于扇形 COB 的面积,根据已知条件可以得到扇形 COB 的面积,本题得以解决【解答】解:CDB=30,COB=60,又 弦 CDAB,CD=2 ,OC= , ,故选 D【点评】本题考查扇形面积的计算,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题12如图,已知二次函数 y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c 0,ab, 4acb20;其中正确的

    23、结论有( )A1 个 B2 个 C3 个 D4 个【考点】二次函数图象与系数的关系【专题】压轴题【分析】首先根据二次函数 y=ax2+bx+c 的图象经过原点,可得 c=0,所以 abc=0;然后根据 x=1 时,y0,可得 a+b+c0;再根据图象开口向下,可得 a0,图象的对称轴为 x=第 17 页(共 33 页),可得 ,b0,所以 b=3a,a b;最后根据二次函数 y=ax2+bx+c 图象与 x 轴有两个交点,可得0,所以 b24ac0,4acb 20,据此解答即可【解答】解:二次函数 y=ax2+bx+c 图象经过原点,c=0,abc=0正确;x=1 时,y0,a+b+c0,不正

    24、确;抛物线开口向下,a0,抛物线的对称轴是 x= , ,b0,b=3a,又 a0,b0,ab,正确;二次函数 y=ax2+bx+c 图象与 x 轴有两个交点,0,b24ac0,4acb 20,正确;综上,可得正确结论有 3 个:故选:C【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:二次项系数 a 决定抛物线的开口方向和大小:当 a0 时,抛物线向上开口;当 a0 时,抛物线向下开口; 一次项系数 b 和二次项系数 a 共同决定对称轴的位置:当 a 与 b 同号时(即 ab0),对称轴在 y 轴左; 当 a 与 b 异号时(即 ab0),对称轴第 18 页

    25、(共 33 页)在 y 轴右(简称:左同右异)常数项 c 决定抛物线与 y 轴交点 抛物线与 y 轴交于(0,c)二、填空题:本大题共 6 小题,满分 24 分,只填写最后结果,每小题填对得 4 分。13计算: 21+ |2|= 2 【考点】实数的运算;负整数指数幂【分析】直接利用负整数指数幂的性质以及结合绝对值的性质和二次根式的性质分别化简求出答案【解答】解: 21+ |2|=3 +22=2 故答案为:2 【点评】此题主要考查了实数运算,根据题意正确化简各数是解题关键14如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4 米,AB=8 米,MAD=45 , MBC=3

    26、0,则警示牌的高 CD 为 2.9 米(结果精确到 0.1 米,参考数据: =1.41, =1.73)【考点】勾股定理的应用【分析】首先根据等腰直角三角形的性质可得 DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC) 2,代入数可得答案【解答】解:由题意可得:AM=4 米,MAD=45,DM=4m,AM=4 米,AB=8 米,第 19 页(共 33 页)MB=12 米,MBC=30,BC=2MC,MC2+MB2=(2MC) 2,MC2+122=(2MC) 2,MC=4 ,则 DC=4 42.9(米),故答案为:2.9【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直

    27、角边的平方和等于斜边的平方15如图,在半径为 3 的O 中,直径 AB 与弦 CD 相交于点 E,连接 AC,BD,若AC=2,则 tanD= 2 【考点】锐角三角函数的定义【分析】连接 BC 可得 RTACB,由勾股定理求得 BC 的长,进而由 tanD=tanA= 可得答案【解答】解:如图,连接 BC,AB 是O 的直径,ACB=90,AB=6,AC=2,BC= = =4 ,第 20 页(共 33 页)又D= A,tanD=tanA= = =2 故答案为:2 【点评】本题考查了三角函数的定义、圆周角定理、解直角三角形,连接 BC 构造直角三角形是解题的关键16如图,点 A 的坐标为( 4,

    28、0),直线 y= x+n 与坐标轴交于点 B、C,连接 AC,如果ACD=90 ,则 n 的值为 【考点】一次函数图象上点的坐标特征【分析】由直线 y= x+n 与坐标轴交于点 B,C,得 B 点的坐标为( n,0),C 点的坐标为(0,n),由 A 点的坐标为( 4,0),ACD=90 ,用勾股定理列出方程求出 n 的值【解答】解:直线 y= x+n 与坐标轴交于点 B,C,B 点的坐标为( n,0),C 点的坐标为(0,n),A 点的坐标为( 4,0),ACD=90 ,AB2=AC2+BC2,AC2=AO2+OC2,BC 2=0B2+0C2,AB2=AO2+OC2+0B2+0C2,即( n

    29、+4) 2=42+n2+( n) 2+n2解得 n= ,n=0(舍去)第 21 页(共 33 页)故答案为: 【点评】本题主要考查了一次函数图象上点的坐标特征及解直角三角形,解题的关键是利用勾股定理列出方程求 n17如图,在ABC 中, C=90,AC=BC= ,将 ABC 绕点 A 顺时针方向旋转 60到ABC的位置,连接 CB,则 CB= 1 【考点】旋转的性质【分析】连接 BB,根据旋转的性质可得 AB=AB,判断出 ABB是等边三角形,根据等边三角形的三条边都相等可得 AB=BB,然后利用“边边边” 证明ABC 和B BC全等,根据全等三角形对应角相等可得ABC =BBC,延长 BC交

    30、 AB于 D,根据等边三角形的性质可得 BDAB,利用勾股定理列式求出 AB,然后根据等边三角形的性质和等腰直角三角形的性质求出 BD、CD,然后根据 BC=BDCD 计算即可得解【解答】解:如图,连接 BB,ABC 绕点 A 顺时针方向旋转 60得到 ABC,AB=AB,BAB=60,ABB是等边三角形,AB=BB,在ABC和B BC中,ABCBBC(SSS),ABC=BBC,延长 BC交 AB于 D,第 22 页(共 33 页)则 BDAB,C=90,AC=BC= ,AB= =2,BD=2 = ,CD= 2=1,BC=BDCD= 1故答案为: 1【点评】本题考查了旋转的性质,全等三角形的判

    31、定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出 BC在等边三角形的高上是解题的关键,也是本题的难点18一列数 a1,a 2,a 3,满足条件: a1= ,a n= (n 2,且 n 为整数),则a2016= 1 【考点】规律型:数字的变化类【分析】根据题意求出 a1,a 2,a 3,的值,找出循环规律即可求解【解答】解:a 1= ,a 2= =2,a 3= =1,a 4= = 可以发现:数列以 ,2,1 循环出现,20163=672,所以 a2016=1第 23 页(共 33 页)故答案为1【点评】此题主要考查数列的规律探索,认真计算找出循环出现的规律是

    32、解题的关键三、解答题:本大题共 7 小题,满分 60 分,解答时,要写出必要的文字说明、证明过程或演算步骤。19先化简,再求值: ,其中 a 是方程 2x2+x3=0 的解【考点】分式的化简求值【分析】先化简代数式、解方程,然后结合分式的性质对 a 的值进行取舍,并代入求值即可【解答】解:原式= ,= ,= 由 2x2+x3=0 得到:x 1=1,x 2= ,又 a10 即 a1,所以 a= ,所以原式= = 【点评】本题考查了分式的化简求值解答该题时,一定要注意分式的分母不等于零这一限制性条件,以防错解该题20P n 表示 n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重

    33、合,那么 Pn 与 n 的关系式是:P n= (n 2an+b)(其中 a,b 是常数,n4)第 24 页(共 33 页)(1)通过画图,可得:四边形时,P 4= 1 ;五边形时,P 5= 5 (2)请根据四边形和五边形对角线交点的个数,结合关系式,求 a,b 的值【考点】作图应用与设计作图;二元一次方程的应用;多边形的对角线【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;(2)将(1)中的数值代入公式可得出关于 a、b 的二元一次方程组,解方程组即可得出结论【解答】解:(1)画出图形如下由画形,可得:当 n=4 时,P 4=1;当 n=5 时,P 5=5故答案为:1;5

    34、(2)将(1)中的数值代入公式,得: ,解得: 【点评】本题考查了多边形的对角线、作图以及二元一次方程组的应用,解题的关键是:(1)画出图形,数出对角线交点的个数;(2)代入数据得出关于 a、b 的二元一次方程组本题属于基础题,难度不大,解决该题型题目时,依据题意画出图形,利用数形结合解决问题是关键21小军同学在学校组织的社会实践活动中,负责了解他所居住的小区 450 户具名的生活用水情况,他从中随机调查了 50 户居民的月均用水量(单位:t),并绘制了样本的频数分布表:月均用水量2x3 3x4 4x5 5x6 6x7 7x8 8x9频数 2 12 10 3 2第 25 页(共 33 页)百分

    35、比 4% 24% 30% 20% 6% 4%(1)请根据题中已有的信息补全频数分布: 15 , 6 , 12% ;(2)如果家庭月均用水量在 5x8 范围内为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)记月均用水量在 2x3 范围内的两户为 a1,a 2,在 7x8 范围内的 3 户b1、b 2、b 3,从这 5 户家庭中任意抽取 2 户,试完成下表,并求出抽取出的 2 户家庭来自不同范围的概率a1 a2 b1 b2 b3a1a2b1b2b3【考点】列表法与树状图法;用样本估计总体;频数(率)分布表【分析】(1)根据频数的相关知识列式计算即可(2)用总体乘以样本中

    36、中等用水量家庭的百分比即可;(3)先完成表格,再求概率即可【解答】解:(1)50 30%=15,50212151032=6,650=0.12=12%,故答案为:15,6,12%;(2)中等用水量家庭大约有 450(20%+12%+6% )=171(户);(3)第 26 页(共 33 页)抽取出的 2 户家庭来自不同范围的概率:P= = 【点评】此题主要考查频数分布表和概率的相关知识,会求频数,会用样本估计总体,会用列表法求事件的概率是解题的关键22如图,在矩形 OABC 中,OA=3,OC=2,F 是 AB 上的一个动点(F 不与 A,B 重合),过点 F 的反比例函数 y= (k0)的图象与

    37、 BC 边交于点 E(1)当 F 为 AB 的中点时,求该函数的解析式;(2)当 k 为何值时,EFA 的面积最大,最大面积是多少?【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;二次函数的最值【分析】(1)当 F 为 AB 的中点时,点 F 的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于 k 的二次函数,利用二次函数求出最值即可【解答】解:(1)在矩形 OABC 中,OA=3,OC=2,B(3,2),第 27 页(共 33 页)F 为 AB 的中点,F( 3,1),点 F 在反比例函数 y= (k0)的图象上,k=3,

    38、该函数的解析式为 y= (x 0);(2)由题意知 E,F 两点坐标分别为 E( ,2),F(3, ),SEFA= AFBE= k(3 k),= k k2= ( k26k+99)= ( k3) 2+当 k=3 时,S 有最大值S 最大值 = 【点评】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键23如图,AC 是 O 的直径,BC 是O 的弦,点 P 是 O 外一点,连接PB、AB,PBA=C(1)求证:PB 是O 的切线;(2)连接 OP,若 OPBC,且 OP=8,O 的半径为 2 ,求 BC 的长【

    39、考点】切线的判定第 28 页(共 33 页)【分析】(1)连接 OB,由圆周角定理得出ABC=90,得出 C+BAC=90,再由OA=OB,得出 BAC=OBA,证出PBA+OBA=90,即可得出结论;(2)证明ABCPBO,得出对应边成比例,即可求出 BC 的长【解答】(1)证明:连接 OB,如图所示:AC 是O 的直径,ABC=90,C+BAC=90,OA=OB,BAC=OBA,PBA=C,PBA+OBA=90,即 PBOB,PB 是O 的切线;(2)解: O 的半径为 2 ,OB=2 ,AC=4 ,OPBC,C=BOP,又ABC=PBO=90 ,ABCPBO, ,即 ,BC=2【点评】本

    40、题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键第 29 页(共 33 页)24如图,把EFP 放置在菱形 ABCD 中,使得顶点 E, F,P 分别在线段 AB,AD ,AC上,已知 EP=FP=6,EF=6 ,BAD=60,且 AB6 (1)求EPF 的大小;(2)若 AP=10,求 AE+AF 的值;(3)若EFP 的三个顶点 E、 F、P 分别在线段 AB、AD、AC 上运动,请直接写出 AP 长的最大值和最小值【考点】菱形的性质;几何问题的最值【分析】(1)根据锐角三角函数求出FPG ,最后求出EPF(2)先判断出

    41、RtPMERtPNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出 AP 最大和最小值【解答】解:(1)过点 P 作 PGEF 于点 G,如图 1 所示PE=PF=6,EF=6 ,FG=EG=3 ,FPG=EPG= EPF在 RtFPG 中,sinFPG= = = ,FPG=60,EPF=120(2)过点 P 作 PMAB 于点 M,作 PNAD 于点 N,如图 2 所示第 30 页(共 33 页)AC 为菱形 ABCD 的对角线,DAC=BAC,AM=AN,PM=PN在 RtPME 和 RtPNF 中,PM=PN,PE=PF,RtPMERtPNF,ME=NF又 AP=1

    42、0,PAM= DAB=30,AM=AN=APcos30=10 =5 ,AE+AF=(AM+ME )+(AN NF)=AM+AN=10 (3)如图,当EFP 的三个顶点分别在 AB,AD,AC 上运动,点 P 在 P1,P 之间运动,P1O=PO=3,AO=9,AP 的最大值为 12,AP 的最小值为 6,【点评】此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线25如图,已知抛物线 y=ax2+bx+c(a0)的对称轴为直线 x=1,且抛物线经过A(1,0),C(0,3)两点,与 x 轴交于点 B(1)若直线 y=mx+n 经过 B、C 两点,求直线 BC 和抛物线的解析式;(2)在抛物线的对称轴 x=1 上找一点 M,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;


    注意事项

    本文(山东省枣庄市2016年中考数学试卷及答案解析)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开