1、26.1.2反比例函数的图象与性质,已知一次函数y=kx(k0)的图象是,反比例函数 (k0)的图象是什么呢?,让我们一起画个反比例函数的图象看看,好吗?,一条直线,回顾,画出反比例函数 和 的函数图象。,函数图象画法,列 表,描 点,连 线,描点法,注意:列表时自变量 取值要均匀和对称x0 选整数较好计算和描点。,操作一:,1,2,3,4,5,6,-1,-3,-2,-4,-5,-6,1,2,3,4,-1,-2,-3,-4,0,-6,-5,5,6,y,x,1,2,3,4,5,6,-1,-3,-2,-4,-5,-6,1,2,3,4,-1,-2,-3,-4,0,-6,-5,5,6,x,y,1,6,
2、2,3,3,2,4,1.5,5,1.2,6,1,6,-1,-6,-2,-3,-3,-1.5,-2,-4,-5,-1.2,-6,-1,-6,6,3,-3,2,-2,1.5,-1.5,1.2,-1.2,1,-1,操作二:,比一比:,同桌两人分别画出函数 或 的图象,看谁画得又快又好,找一找:,、这几个函数图象有什么共同点?,、函数图象分别位于哪几个象限?,、y随x的变化有怎样的变化?,根据大家所画出的函数图象,从以下几个方面出发,你 能发现反比例函数 的图象及性质有哪些?,1,2,3,4,5,6,-1,-3,-2,-4,-5,1,2,3,4,-1,-2,-3,-4,0,-6,-5,5,6,X,y,
3、、这几个函数图象有什么共同点?,、函数图象分别位于哪几个象限?,、y随的x变化有怎样的变化?,提示:,反比例函数的性质,1.当k0时,图象的两个分支分别在第一、三象限内,在每一个象限内,y随x的增大而减小;,2.当k0时,图象的两个分支分别在第二、四象限内,在每一个象限内,y随x的增大而增大。,0,y,x,y,0,D,活学活用,已知 k0时,图象在第_象限,Y 随x 的增大而_.,4,x,- 4,x,x,5,一、三,二、四,一,减小,增大,减小,当堂训练,4.下列函数中,图象位于第二、四象限的有 ;在图象所在象限内,y的值随x的增大而增大的有 .,(3)、(4),(2)、(3)、(5),1.已
4、知点A(-2,y1),B(-1,y2) 都在反比例函数 的图象上,则y1与y2的大小关系(从大到小)为 .,y1 y2,2.已知点A(-2,y1),B(-1,y2)都在反比例函数 的图象上,则y1与y2的大小关系(从大到小)为 .,y2 y1,y1,y2,y1 0y2,2.如图,点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是 .,一路下来,我们结识了很多新知识,也有了很多的新想法。你能谈谈自己的收获吗?说一说,让大家一起来分享。,K0,K0,当k0时,函数图像 的两个分支分别在第 一、三像限,在每个 像限内,y随x的增大 而减小.,当k0时,函数图像 的两个分支分别在第 二、四像限,在每个 像限内,y随x的增大 而增大.,1.反比例函数的图像是双曲线;,2.图像性质见下表:,完成本课小练习册有关内容,作 业,再见!,