欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年春人教版八年级下数学《18.1.2.2平行四边形的判定(2)》课件

    • 资源ID:46571       资源大小:1.10MB        全文页数:27页
    • 资源格式: PPT        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年春人教版八年级下数学《18.1.2.2平行四边形的判定(2)》课件

    1、18.1.2 平行四边形判定,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平行四边形的判定(2),1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法.(重点) 2.会进行平行四边形的性质与判定的综合运用.(难点),数学来源于生活,高铁被外媒誉为我国新四大发明之一,我们知道铁路的两条直铺的铁轨互相平行,那么铁路工人是怎样的确保它们平行的呢?,情景引入,导入新课,只要使互相平行的夹在铁轨之间的枕木长相等就可以了,那这是为什么呢?会不会跟我们学过的平行四边形有关呢?,问题 我们知道,两组对分别平行或相等的是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件

    2、时这个四边形能成为平行四边形呢?,猜想1:一组对边相等的四边形是平行四边形.,讲授新课,等腰梯形不是平行四边形,因而此猜想错误.,猜想2:一组对边平行的四边形是平行四边形.,梯形的上下底平行,但不是平行四边形,因而此猜想错误.,B,A,活动 如图,将线段AB向右平移BC长度后得到线段 CD,连接AD,BC,由此你能猜想四边形ABCD的形状吗?,D,C,四边形ABCD是平行四边形,猜想3:一组对边平行且相等的四边形是平行四边形.,你能证明吗?,证明思路,作对角线构造全等三角形,一组对应边相等,两组对边分别相等,四边形ABCD是平行四边形,如图,在四边形ABCD中,AB=CD且ABCD, 求证:四

    3、边形ABCD是平行四边形.,证一证,证明:连接AC. ABCD, 1=2.,在ABC和CDA中,AB=CD,,AC=CA,,1=2,,ABCCDA(SAS),,BC=DA . 又AB= CD,四边形ABCD是平行四边形.,平行四边形的判定定理: 一组对边平行且相等的四边形是平行四边形.,归纳总结,几何语言描述: 在四边形ABCD中,ABCD,AB=CD, 四边形ABCD是平行四边形.,典例精析,证明:四边形ABCD是平行四边形, AB =CD,EB /FD 又 EB = AB ,FD = CD, EB =FD 四边形EBFD是平行四边形,例1 如图 ,在平行四边形ABCD中,E,F分别是AB,

    4、CD的中点.求证:四边形EBFD是平行四边形.,例2 如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,AE=DF,A=D,AB=DC求证:四边形BFCE是平行四边形,证明:AB=CD, AB+BC=CD+BC,即AC=BD, 在ACE和DBF中,ACBD ,AD, AEDF , ACEDBF(SAS), CE=BF,ACE=DBF, CEBF, 四边形BFCE是平行四边形,【变式题】 如图,点C是AB的中点,AD=CE,CD=BE (1)求证:ACDCBE; (2)求证:四边形CBED是平行四边形,证明:(1)点C是AB的中点,AC=BC. 在ADC与CEB中,ADCE ,

    5、 CDBE , ACBC , ADCCEB(SSS), (2)ADCCEB, ACD=CBE, CDBE. 又CD=BE, 四边形CBED是平行四边形,练一练,1.已知四边形ABCD中有四个条件:ABCD,AB=CD,BCAD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是 ( ) AABCD,AB=CD BABCD,BCAD CABCD,BC=AD DAB=CD,BC=AD,C,证明:四边形AEFD和EBCF都是平行四边形, AD EF,AD=EF,EF BC, EF=BC. AD BC,AD=BC. 四边形ABCD是平行四边形.,2.四边形AEFD和EBCF都是平行四

    6、边形,求证:四边形ABCD 是平行四边形.,例3 如图,ABC中,BD平分ABC,DFBC,EFAC,试问BF与CE相等吗?为什么? 解:BFCE理由如下: DFBC,EFAC, 四边形FECD是平行四边形,FDB=DBE, FD=CE. BD平分ABC, FBD=EBD, FBD=FDB. BF=FD. BFCE.,例4 如图,将ABCD沿过点A的直线l折叠,使点D落到AB边上的点D处,折痕l交CD边于点E,连接BE求证:四边形BCED是平行四边形.,证明:由题意得DAE=DAE,DEA=DEA,D=ADE, DEAD, DEA=EAD, DAE=EAD=DEA=DEA, DAD=DED,

    7、四边形DADE是平行四边形, DE=AD.,四边形ABCD是平行四边形, ABDC,AB=DC, CEDB,CE=DB, 四边形BCED是平行四边形.,此题利用翻折变换的性质以及平行线的性质得出DAE=EAD=DEA=DEA,再结合平行四边形的判定及性质进行解题.,练一练,1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:ADBC;ADBC;OAOC;OBOD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( ) A3种 B4种 C5种 D6种,B,2.如图,在ABCD中,E,F分别是AB,CD的中点,连接DE,EF,BF,写出图中除ABCD以外的所有的平行四边形.

    8、,解:四边形ABCD是平行四边形, ADBC,AD=BC. E,F分别是AB,CD的中点, AE=BF=DE=FC, 四边形ADFE是平行四边形,四边形EFCB是平行四边形,四边形BEDF是平行四边形.,当堂练习,1.在ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是 ( ) AAF=CE BAE=CF CBAE=FCD DBEA=FCE,B,2. 已知四边形ABCD中,ABCD,AB=CD,周长为40cm,两邻边的比是3:2,则较大边的长度是( )A8cm B10cmC12cm D14cm,C,3.如图,在平行四边形ABCD中,EFA

    9、D,HNAB,则图中的平行四边形的个数共有_个.,9,4.如图,点E,C在线段BF上,BE=CF,B=DEF,ACB=F,求证:四边形ABED为平行四边形,证明:BE=CF, BE+EC=CF+EC 即BC=EF 又B=DEF,ACB=F, ABCDEF, AB=DE. B=DEF, ABDE 四边形ABED是平行四边形,5.如图,ABC中,AB=AC=10,D是BC边上的任意一点,分别作DFAB交AC于F,DEAC交AB于E,求DE+DF的值,解:DEAC,DFAB, 四边形AEDF是平行四边形, DE=AF. 又AB=AC=10, B=C. DFAB, CDF=B, CDF=C, DF=C

    10、F, DE+DF=AF+FC=AC=10,6.如图,在四边形ABCD中,ADBC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s) (1)用含t的代数式表示:AP=_; DP=_;BQ=_;CQ=_;,tcm,(12-t)cm,(15-2t)cm,2tcm,能力提升:,(2)当t为何值时,四边形APQB是平行四边形?,解:根据题意有AP=tcm,CQ=2tcm, PD=(12-t)cm,BQ=(15-2t)cm ADBC, 当AP=BQ时,四边形APQB是平行四边形 t=15-2t, 解得t=5 t=5s时四边形APQB是平行四边形;,解:由AP=tcm,CQ=2tcm, AD=12cm,BC=15cm, PD=AD-AP=12-t, ADBC, 当PD=QC时,四边形PDCQ是平行四边形 即12-t=2t, 解得t=4s, 当t=4s时,四边形PDCQ是平行四边形,(3)当t为何值时,四边形PDCQ是平行四边形?,课堂小结,平行四边形的判定(2),平行四边形的性质与判定的综合运用,一组对边平行且相等的四边形是平行四边形.,


    注意事项

    本文(2019年春人教版八年级下数学《18.1.2.2平行四边形的判定(2)》课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开