欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    沪科版七年级数学下册《9.3(第1课时)分式方程及其解法》课件

    • 资源ID:50394       资源大小:297.92KB        全文页数:29页
    • 资源格式: PPTX       下载:注册后免费下载
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付说明:
    本站最低充值10积分,下载本资源后余额将会存入您的账户,您可在我的个人中心查看。
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    沪科版七年级数学下册《9.3(第1课时)分式方程及其解法》课件

    1、9.3 分式方程,第9章 分 式,导入新课,讲授新课,当堂练习,课堂小结,第1课时 分式方程及其解法,1.理解分式方程的概念; 2.掌握可化为一元一次方程的分式方程的解法;(重点) 3.理解分式方程产生增根的原因,掌握分式方程验根的方法.(难点),学习目标,导入新课,问题引入,一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用时间相等.设江水的流速为x千米/时,根据题意可列方程 .,这个程是我们以前学过的方程吗?它与一元一次 方程有什么区别?,讲授新课,定义:像这样,分母中含未知数的方程叫做分式方程.,知识要点,判一判 下列方程

    2、中,哪些是分式方程?哪些是整式方程?,整式方程,分式方程,方法总结:判断一个方程是否为分式方程,主要是看分母中是否含有未知数(注意:不是未知数),你能试着解这个分式方程吗?,(2)怎样去分母?,(3)在方程两边乘什么样的式子才能把每一个分母都约去?,(4)这样做的依据是什么?,解分式方程最关键的问题是什么?,(1)如何把它转化为整式方程呢?,“去分母”,方程各分母最简公分母是:(30+x)(30-x),解:方程两边同乘(30+x)(30-x),得,检验:将x=6代入原分式方程中,左边= =右边,因此x=6是原分式方程的解.,90(30-x)=60(30+x),,解得 x=6.,x=6是原分式方

    3、程的解吗?,下面我们再讨论一个分式方程:,解:方程两边同乘(x+5)(x-5),得,x+5=10,,解得 x=5.,x=5是原分式方程的解吗?,检验:将x=5代入原方程中,分母x-5和x2-25的值都为0,相应的分式无意义.因此x=5虽是整式方程x+5=10的解,但不是原分式方程 的解,实际上,这个分式方程无解.,想一想:上面两个分式方程中,为什么 去分母后所得整式方程的解就是原分式方程的解, 而 去分母后所得整式方程的解却不是原分式方程的解呢?,真相揭秘: 分式两边同乘了不为0的式子,所得整式方程的解与分式方程的解相同.,我们再来观察去分母的过程:,真相揭秘:分式两边同乘了等于0的式子,所得

    4、整式方程的解使分母为0,这个整式方程的解就不是原分式方程的解.,解分式方程时,去分母后所得整式方程的解有可能使原方程的分母为0,所以分式方程的解必须检验,怎样检验?,这个整式方程的解是不是原分式的解呢?,分式方程解的检验-必不可少的步骤,检验方法:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.,1.在方程的两边都乘以最简公分母,约去分母,化成整式方程. 2.解这个整式方程. 3.把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去。 4.写出原方程的根.,简记为:“一化二解三

    5、检验”.,知识要点,“去分母法”解分式方程的步骤,例1 解方程:,解 :方程两边都乘最简公分母x(x2),得,解这个一元一次方程,得 x = 3.,检验:把 x=3 代入原方程的左边和右边,得,因此 x = 3 是原方程的解,典例精析,解:两边都乘以最简公分母(x+2)(x-2),得 x+2=4.,解得 x=2.,检验:把x=2代入原方程,两边分母为0,分式无意义. 因此x=2不是原分式方程的解,从而原方程无解.,提醒:在去分母,将分式方程转化为整式方程解的过程中出现使最简公分母(或分母)为零的根是增根.,用框图的方式总结为:,否,是,例2,关于x的方程 的解是正数,则a的取值范围是_,解析:

    6、去分母得2xax1,解得xa1,关于x的方程 的解是正数,x0且x1,a10且a11,解得a1且a2,a的取值范围是a1且a2.,方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.,a1且a2,若关于x的分式方程 无解,求m的值,例3,解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根,解:方程两边都乘以(x2)(x2)得2(x2)mx3(x2),即(m1)x10. 当m10时,此方程无解,此时m1; 方程有增根,则x2或x2, 当x2时,代入(m1)x10得(m1)210,m4; 当x2时,代入

    7、(m1)x10得(m1)(2)10,解得m6, m的值是1,4或6.,分式方程无解与分式方程有增根所表达的意义是不一样的分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数,方法总结,当堂练习,D,2. 要把方程 化为整式方程,方程两边可以同乘以( ),A. 3y-6 B. 3y C. 3 (3y-6) D. 3y (y-2),1.下列关于x的方程中,是分式方程的是( ) A. B. C. D.,D,3. 解分式方程 时,去分母后得到的整式方程是( ) A.2(x-8)+5x=16(x-7) B.2(x-8)

    8、+5x=8 C.2(x-8)-5x=16(x-7) D.2(x-8)-5x=8,A,4若关于x的分式方程 无解,则m的值为 ( ) A1,5 B1 C1.5或2 D0.5或1.5,D,5.解方程,解: 方程两边乘x(x-3),得,2x=3x-9.,解得,x=9.,检验:当x=9时,x(x-3) 0.,所以,原分式方程的解为x=9.,6.解方程,解: 方程两边乘(x-1)(x+2),得,x(x+2)-(x-1)(x+2)=3.,解得,x=1.,检验:当x=1时, (x-1)(x+2) =0, 因此x=1不是原分式方程的解.,所以,原分式方程无解.,7. 解方程:,解:去分母,得,解得,检验:把 代入,所以原方程的解为,8.若关于x的方程 有增根,求m的值.,解:方程两边同乘以x-2,得2-x+m=2x-4,合并同类项,得3x=6+m,m=3x-6.该分式方程有增根,x=2,m=0.,课堂小结,分式 方程,定义,分母中含有未知数的方程叫做分式方程,注意,(1)去分母时,原方程的整式部分漏乘,步骤 (去分母法),一化(分式方程转化为整式方程); 二解(整式方程); 三检验(代入最简公分母看是否为零),(2)约去分母后,分子是多项式时,没有添括号(因分数线有括号的作用),(3)忘记检验,


    注意事项

    本文(沪科版七年级数学下册《9.3(第1课时)分式方程及其解法》课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开