欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019届中考数学总复习:第20课时-圆的有关概念及性质课件

    • 资源ID:51633       资源大小:1.59MB        全文页数:21页
    • 资源格式: PPT        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019届中考数学总复习:第20课时-圆的有关概念及性质课件

    1、第20课时 圆的有关概念及性质,考点梳理,自主测试,考点一 圆的有关概念及其对称性 1.圆的定义 (1)圆是平面内到一定点的距离等于定长的所有点组成的图形,这个定点叫做圆心,定长叫做半径; (2)平面内一条线段绕着一个固定端点旋转一周,另一个端点所形成的图形叫做圆,固定的端点叫做圆心,这条线段叫做半径.,考点梳理,自主测试,3.弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径. 4.弦心距:从圆心到弦的距离. 5.弓形:由弦及其所对的弧组成的图形. 6.同心圆:圆心相同,半径不等的圆. 7.等圆:圆心不同,半径相等的圆. 8.等弧:在同圆或等圆中,能够重合的弧. 9.圆的对称性 (1)圆

    2、的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴; (2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形; (3)圆是旋转对称图形:圆绕圆心旋转任意角度,都能和原来的图形重合.这就是圆的旋转不变性.,考点梳理,自主测试,考点二 圆心角、弧、弦之间的关系 1.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等. 2.推论 在同圆或等圆中,(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.若三项中有一项成立,则其余对应的两项也成立.,考点梳理,自主测试,考点三 垂径定理及推论 1.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2.推论1 (1)平

    3、分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 3.推论2 圆的两条平行弦所夹的弧相等.,考点梳理,自主测试,考点四 圆心角与圆周角 1.定义 顶点在圆心的角叫做圆心角;顶点在圆上,角的两边都与圆相交的角叫做圆周角. 2.性质 (1)圆心角的度数等于它所对的弧的度数. (2)一条弧所对的圆周角的度数等于它所对圆心角的度数的一半. (3)同圆或等圆中,同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. (4)半圆(或直径)所对的圆周角是直角,

    4、90的圆周角所对的弦是直径.,考点梳理,自主测试,考点五 确定圆的条件 1.不在同一条直线上的三个点确定一个圆. 2.三角形的外接圆 经过三角形各顶点的圆叫做三角形的外接圆,这个三角形叫做圆的内接三角形,外接圆的圆心叫做三角形的外心.外心是三角形三边垂直平分线的交点.锐角三角形的外心在三角形的内部;直角三角形的外心是斜边的中点;钝角三角形的外心在三角形的外部. 3.圆内接多边形 如果一个多边形的所有顶点都在一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆.圆内接四边形的对角互补.,考点梳理,自主测试,1.下列说法错误的是( ) A.直径是圆中最长的弦 B.长度相等的两条弧是等

    5、弧 C.面积相等的两个圆是等圆 D.半径相等的两个半圆是等弧 答案:B 2.如图,CD是O的直径,弦ABCD于点E,连接BC,BD.下列结论中不一定正确的是( ) A.AE=BEC.OE=DE D.DBC=90 答案:C,考点梳理,自主测试,3.如图,A是O的圆周角,A=40,则OBC的度数为 .答案:50 4.如图,AB是O的直径,弦CDAB.若ABD=65,则ADC= . 答案:25 5.圆的半径为2 cm,圆的一条弦长为 cm,则此弦中点到所对的劣弧中点的距离为 . 答案:1 cm,命题点1,命题点2,命题点3,命题点4,命题点5,命题点1 圆的基本概念 【例1】 如图,已知CD是O的直

    6、径,EOD=78,AE交O于点B,且AB=OC,求A的度数. 分析:已知EOD=78,与A构成了内、外角关系,而E也未知,且AB=OC这一条件不能直接使用,因此想到同圆的半径相等,需连接半径OB,从而得到OB=AB. 解:连接OB. AB=OC,OB=OC, AB=OB,A=1. 又OB=OE,E=2=1+A, DOE=E+A=3A. DOE=78,3A=78,A=26.,命题点1,命题点2,命题点3,命题点4,命题点5,变式训练1下列说法中,不正确的是( ) A.直径是弦,弦是直径 B.半圆周是弧 C.圆上的点到圆心的距离都相等 D.在同圆或等圆中,优弧一定比劣弧长 答案:A,命题点1,命题

    7、点2,命题点3,命题点4,命题点5,命题点2 圆心(周)角、弧、弦之间的关系 【例2】 如图,已知A,B,C,D是O上的四个点,AB=BC,BD交AC于点E,连接CD,AD. (1)求证:DB平分ADC; (2)若BE=3,ED=6,求AB的长.,命题点1,命题点2,命题点3,命题点4,命题点5,命题点1,命题点2,命题点3,命题点4,命题点5,命题点3 垂径定理及推论 【例3】 如图,O的直径AB垂直于弦CD,垂足P是OB的中点, CD=6 cm,求直径AB的长.,命题点1,命题点2,命题点3,命题点4,命题点5,解:如图,连接OC,BC, 则根据ABCD,且垂足P是OB的中点,得OC=BC

    8、. OC=OB,OC=OB=BC. BOC为等边三角形. BOC=60.,命题点1,命题点2,命题点3,命题点4,命题点5,命题点1,命题点2,命题点3,命题点4,命题点5,解析:由OCAB,利用垂径定理可知AD=BD= AB=150 m. 又OD=OC-CD=(OC-50)m, 设这段弯路的半径为x m,则OD=(x-50)(m). 在RtAOD中,由勾股定理可知OA2=OD2+AD2, 即x2=(x-50)2+1502,解得x=250. 答案:250,命题点1,命题点2,命题点3,命题点4,命题点5,命题点4 圆周角定理及推论 【例4】 如图,半圆的直径AB=10,点C在半圆上,BC=6. (1)求弦AC的长; (2)若P为AB的中点,PEAB交AC于点E,求PE的长.,命题点1,命题点2,命题点3,命题点4,命题点5,命题点1,命题点2,命题点3,命题点4,命题点5,命题点5 圆内接四边形 【例5】 如图,已知四边形ABCD是圆内接四边形,1=120,则CDE= 度. 解析:1=120,B= 1=60. 四边形ABCD内接于O, CDE=B. CDE=60. 答案:60,命题点1,命题点2,命题点3,命题点4,命题点5,


    注意事项

    本文(2019届中考数学总复习:第20课时-圆的有关概念及性质课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开