欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018年四川省成都市中考数学二模试卷(含答案解析)

    • 资源ID:52473       资源大小:582KB        全文页数:29页
    • 资源格式: DOC        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年四川省成都市中考数学二模试卷(含答案解析)

    1、2018 年四川省成都市中考数学二模试卷一选择题(共 10 小题,满分 30 分,每小题 3 分)1若 x5,则 x 的取值范围是( )Ax5 Bx5 Cx5 Dx 52下列运算正确的是( )A3x+4y7xy B(a) 3a2a 5C(x 3y) 5x 8y5 Dm 10m7m 33如图,几何体的左视图是( )A BC D4十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从 54 万亿元增长 80 万亿元,稳居世界第二,其中 80 万亿用科学记数法表示为( )A810 12 B810 13 C810 14 D0.810 135“算经十书”是指汉唐一千多年间

    2、的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果下列四部著作中,不属于我国古代数学著作的是( )A 九章算术 B 几何原本C 海岛算经 D 周髀算经6某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分) 89 90 92 94 95人数 4 6 8 5 7对于这组数据,下列说法错误的是( )A平均数是 92 B中位数是 92 C众数是 92 D极差是 67将抛物线 yx 2 先向下平移 3 个单位,再向左平移 1 个单位,则新的函数解析式为( )Ay(x+1) 2+3 By(x1) 2+3 Cy(x1) 23 Dy (x+1) 23

    3、8关于 x 的方程(m 2)x 24x+10 有实数根,则 m 的取值范围是( )Am6 Bm6 Cm6 且 m2 Dm 6 且 m29如图,ABCD,那么( )ABAD 与B 互补 B12CBAD 与 D 互补 DBCD 与D 互补10如图,六边形 ABCDEF 是正六边形,曲线 FK1K2K3K4K5K6K7叫做“正六边形的渐开线”,其中弧 FK1,弧 K1K2,弧 K2K3,弧 K3K4,弧 K4K5,弧 K5K6,的圆心依次按点A,B ,C ,D,E,F 循环,其弧长分别记为 L1,L 2,L 3,L 4,L 5,L 6,当 AB1 时,L 2016等于( )A B C D 二填空题(

    4、共 4 小题,满分 16 分,每小题 4 分)11(4 分)若 2x+y4,x 1,则 4x2y 2 12(4 分)如图,在 44 正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是 13(4 分)如图,平行四边形纸片 ABCD 中,AC ,CAB30,将平行四边形纸片ABCD 折叠,使点 A 与点 C 重合,则折痕 MN 14(4 分)把直线 yx 1 沿 x 轴向右平移 1 个单位长度,所得直线的函数解析式为 三解答题(共 6 小题,满分 54 分)15(12 分)(1)计算:( ) 1 (2018) 04

    5、cos30(2)解不等式组: 并把它的解集在数轴上表示出来16(6 分)先化简,再求值:(x2+ ) ,其中 x 17(8 分)如图,飞机沿水平线 AC 飞行,在 A 处测得正前方停泊在海面上某船只 P 的俯角CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为 15,飞行 10km 到达 B 处,在 B 处测得该船只的俯角CBP52,求飞机飞行的高度(精确到 1m)18(8 分)某数学兴趣小组在全校范围内随机抽取了 50 名同学进行“舌尖上的沙县我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个

    6、不透明的口袋中有 4 个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C ,D随机地摸出一个小球然后放回,再随机地摸出一个小球请用列表或画树状图的方法,求出两次都摸到 A 的概率(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011 年底,小吃产业年营业额达 50 亿元,到了 2013 年底,小吃产业年营业额达 60.5 亿元假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19(10 分)如图,已知反比例函数 y 的图象与一次函数 yx+b 的图象交于点 A(1,4),点B(4 ,n)(1)求 n 和 b 的值;(2)求OAB 的面积;

    7、(3)直接写出一次函数值大于反比例函数值的自变量 x 的取值范围20(10 分)已知:如图,BD 为O 的直径,点 A 是劣弧 BC 的中点,AD 交 BC 于点 E,连接AB(1)求证:AB 2AE AD;(2)过点 D 作O 的切线,与 BC 的延长线交于点 F,若 AE2,ED4,求 EF 的长四填空题(共 5 小题,满分 20 分,每小题 4 分)21(4 分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间 5 天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 22(4 分)当 x5.4,y 2.4 时,代数式 x22xy+ y2

    8、 的值是 23(4 分)如图,点 C 在以 AB 为直径的半圆上,AB8,CBA30,点 D 在线段 AB 上运动,点 E 与点 D 关于 AC 对称,DFDE 于点 D,并交 EC 的延长线于点 F则线段 EF 的最小值为 24(4 分)如图,把矩形 ABCD 绕着点 A 逆时针旋转 90可以得到矩形 AEFG,则图中三角形AFC 是 三角形25(4 分)二次函数 yax 2+bx+c 的图象如图所示,其对称轴与 x 轴交于点(1,0),图象上有三个点分别为(2,y 1),(3,y 2),(0,y 3),则 y1、y 2、y 3 的大小关系是 (用“”“”或“”连接)五解答题(共 3 小题,

    9、满分 30 分)26(8 分)某商店准备进一批季节性小家电,每个进价为 40 元,经市场预测,销售定价为 50 元,可售出 400 个;定价每增加 1 元,销售量将减少 10 个设每个定价增加 x 元(1)写出售出一个可获得的利润是多少元(用含 x 的代数式表示)?(2)商店若准备获得利润 6000 元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27(10 分)【发现】如图,已知等边ABC ,将直角三角板的 60角顶点 D 任意放在 BC 边上(点 D 不与点 B、C 重合),使两边分别交线段 AB、AC 于点 E

    10、、F(1)若 AB6,AE 4,BD2,则 CF ;(2)求证:EBDDCF【思考】若将图中的三角板的顶点 D 在 BC 边上移动,保持三角板与边 AB、AC 的两个交点E、F 都存在,连接 EF,如图所示,问:点 D 是否存在某一位置,使 ED 平分BEF 且 FD平分CFE?若存在,求出 的值;若不存在,请说明理由【探索】如图,在等腰ABC 中,ABAC ,点 O 为 BC 边的中点,将三角形透明纸板的一个顶点放在点 O 处(其中MONB),使两条边分别交边 AB、AC 于点 E、F(点 E、F 均不与ABC 的顶点重合),连接 EF设B,则AEF 与ABC 的周长之比为 (用含的表达式表

    11、示)28(12 分)如图,已知二次函数 yax 2+bx3a 经过点 A(1,0),C(0,3),与 x 轴交于另一点 B,抛物线的顶点为 D(1)求此二次函数解析式;(2)连接 DC、BC、DB,求证:BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点 P,使得PDC 为等腰三角形?若存在,求出符合条件的点 P 的坐标;若不存在,请说明理由2018 年四川省成都市中考数学二模试卷参考答案与试题解析一选择题(共 10 小题,满分 30 分,每小题 3 分)1若 x5,则 x 的取值范围是( )Ax5 Bx5 Cx5 Dx 5【分析】因为 a(a0),由此性质求得答案即可【解答】解:

    12、x5,5x0x5故选:C【点评】此题考查二次根式的运算方法: a(a0), a(a0)2下列运算正确的是( )A3x+4y7xy B(a) 3a2a 5C(x 3y) 5x 8y5 Dm 10m7m 3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断【解答】解:A、3x 、4y 不是同类项,不能合并,此选项错误;B、(a) 3a2a 5,此选项错误;C、(x 3y) 5x 15y5,此选项错误;D、m 10m7m 3,此选项正确;故选:D【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则3如图,几何体的左视图是( )A BC D【分析】找到从几何体左面看得到的平面

    13、图形即可【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左故选:A【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键4十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从 54 万亿元增长 80 万亿元,稳居世界第二,其中 80 万亿用科学记数法表示为( )A810 12 B810 13 C810 14 D0.810 13【分析】科学记数法的表示形式为 a10n 的形式,其中 1|a| 10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对

    14、值1 时,n 是正数;当原数的绝对值1 时,n 是负数【解答】解:80 万亿用科学记数法表示为 81013故选:B【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中1|a| 10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值5“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果下列四部著作中,不属于我国古代数学著作的是( )A 九章算术 B 几何原本C 海岛算经 D 周髀算经【分析】根据数学常识逐一判别即可得【解答】解:A、九章算术是中国古代数学专著,作者已不可考,

    15、它是经历代各家的增补修订,而逐渐成为现今定本的;B、几何原本是古希腊数学家欧几里得所著的一部数学著作;C、海岛算经是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、周髀算经原名周髀 ,是算经的十书之一,中国最古老的天文学和数学著作;故选:B【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就6某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分) 89 90 92 94 95人数 4 6 8 5 7对于这组数据,下列说法错误的是( )A平均数是 92 B中位数是 92 C众数是 92 D极差是 6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断

    16、【解答】解:A、平均数为 ,符合题意;B、中位数是 92,不符合题意;C、众数为 92,不符合题意;D、极差为 95896,不符合题意;故选:A【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念7将抛物线 yx 2 先向下平移 3 个单位,再向左平移 1 个单位,则新的函数解析式为( )Ay(x+1) 2+3 By(x1) 2+3 Cy(x1) 23 Dy (x+1) 23【分析】由平移的规律即可求得答案【解答】解:将抛物线 yx 2 向下平移 3 个单位,则函数解析式变为 yx 23,将 yx 23 向左平移 1 个单位,则函数解析式变为 y( x+1)

    17、23,故选:D【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”8关于 x 的方程(m 2)x 24x+10 有实数根,则 m 的取值范围是( )Am6 Bm6 Cm6 且 m2 Dm 6 且 m2【分析】当 m20,关于 x 的方程(m 2)x 24x+10 有一个实数根,当 m20 时,列不等式即可得到结论【解答】解:当 m20,即 m2 时,关于 x 的方程(m2)x 24x+10 有一个实数根,当 m20 时,关于 x 的方程(m 2)x 24x+10 有实数根,(4) 24(m2) 10,解得:m6,m 的取值范围是 m6 且 m2,故选:C

    18、【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键9如图,ABCD,那么( )ABAD 与B 互补 B12CBAD 与 D 互补 DBCD 与D 互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可【解答】解:ABCD,BAD 与D 互补,即 C 选项符合题意;当 ADBC 时,BAD 与B 互补,12,BCD 与D 互补,故选项 A、B 、D 都不合题意,故选:C【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键10如图,六边形 ABCDEF 是正六边形,曲线 FK1K2K3K4K5K6K7

    19、叫做“正六边形的渐开线”,其中弧 FK1,弧 K1K2,弧 K2K3,弧 K3K4,弧 K4K5,弧 K5K6,的圆心依次按点A,B,C ,D,E,F 循环,其弧长分别记为 L1,L 2,L 3,L 4,L 5,L 6,当 AB1 时,L 2016等于( )A B C D 【分析】用弧长公式,分别计算出 l1,l 2,l 3,的长,寻找其中的规律,确定 l2016 的长【解答】解:根据题意得:l 1 ,l2 ,l3 ,则 L2016 ,故选:B【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出 l2016 的长二填空题(共 4 小题,满分 16 分,每小题 4 分)11(4 分)若

    20、2x+y4,x 1,则 4x2y 2 8 【分析】利用平方差公式分解因式,进而把已知代入求出答案【解答】解:x 1,2xy2,则 4x2y 2(2x +y)(2xy)428故答案为:8【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键12(4 分)如图,在 44 正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是 【分析】由在 44 正方形网格中,任选取一个白色的小正方形并涂黑,共有 13 种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有 5 种情况,直接利用概率公式求解即可求得答案【解答】

    21、解:如图,根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有 13 个,而能构成一个轴对称图形的有 5 个情况,使图中黑色部诶的图形仍然构成一个轴对称图形的概率是: 故答案为: 【点评】本题考查的是概率公式,熟记随机事件 A 的概率 P(A)事件 A 可能出现的结果数所有可能出现的结果数的商是解答此题的关键13(4 分)如图,平行四边形纸片 ABCD 中,AC ,CAB30,将平行四边形纸片ABCD 折叠,使点 A 与点 C 重合,则折痕 MN 2 【分析】根据翻折变换,可知ONCAOM,且是 Rt,在ONC 中解得 NO【解答】解:根据翻折变换,可知ONCAOM,且

    22、是 Rt,AC , CAB30,在 RtONC,解得 ON1,MN2故答案为 2【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等14(4 分)把直线 yx 1 沿 x 轴向右平移 1 个单位长度,所得直线的函数解析式为 yx 【分析】直接利用一次函数图象平移规律进而得出答案【解答】解:把直线 yx 1 沿 x 轴向右平移 1 个单位长度,所得直线的函数解析式为:y(x1)1x 故答案为:yx 【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键三解答题(共 6 小题,满分

    23、 54 分)15(12 分)(1)计算:( ) 1 (2018) 04cos30(2)解不等式组: 并把它的解集在数轴上表示出来【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可【解答】(1)解:( ) 1 (2018) 04cos302+2 143;(2)解不等式 得: x4解不等式 得: x2;不等式组的解集为:2x4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键16(6

    24、分)先化简,再求值:(x2+ ) ,其中 x 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将 x 的值代入计算可得【解答】解:原式( + ) 2(x+2)2x+4,当 x 时,原式2( )+41+43【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式17(8 分)如图,飞机沿水平线 AC 飞行,在 A 处测得正前方停泊在海面上某船只 P 的俯角CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为 15,飞行 10km 到达 B 处,在 B 处测得该船只的俯角CBP52,求飞机飞行的高

    25、度(精确到 1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出 AC 与 BC,根据 ACBCAB 求出 PC 的长即可【解答】解:在 RtACP 中,tanPAC ,即 AC ,在 Rt BCP 中,tanCBP ,即 BC ,由 ABACBC,得到 10000,解得:PC 3388,则飞机飞行的高度为 3388m【点评】此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键18(8 分)某数学兴趣小组在全校范围内随机抽取了 50 名同学进行“舌尖上的沙县我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图请根据所给信息解答以下问

    26、题:(1)请补全条形统计图;(2)在一个不透明的口袋中有 4 个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C ,D随机地摸出一个小球然后放回,再随机地摸出一个小球请用列表或画树状图的方法,求出两次都摸到 A 的概率(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011 年底,小吃产业年营业额达 50 亿元,到了 2013 年底,小吃产业年营业额达 60.5 亿元假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次

    27、都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为 x,根据等量关系为:2011 年的利润(1+增长率)22013 年的利润,把相关数值代入即可列出方程【解答】解:(1)喜欢花椒饼的人数为 501421510(人),补全条形统计图如下:(2)列表如下:A B C DA (A,A) (B,A) (C,A) (D,A)B (A,B) (B,B) (C,B) (D,B)C (A,C) (B,C) (C,C) (D,C)D (A,D) (B,D) (C,D) (D,D)所有等可能的情况有 16 种,其中恰好两次都摸到“A”的情况有 1 种,则 P (3)设小吃产业年营业额平

    28、均增长率为 x,由题意可得:50(1+x) 260.5,解得:x10%,答:这两年平均增长率是 10%【点评】此题考查概率的求法:如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 A 出现 m 种结果,那么事件 A 的概率 P(A) ;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为 a,变化后的量为 b,平均变化率为 x,则经过两次变化后的数量关系为 a(1x) 2b19(10 分)如图,已知反比例函数 y 的图象与一次函数 yx+b 的图象交于点 A(1,4),点B(4 ,n)(1)求 n 和 b 的值;(2)求OAB 的面积;(3)直接写出一次函数值大于反

    29、比例函数值的自变量 x 的取值范围【分析】(1)把点 A 坐标分别代入反比例函数 y ,一次函数 yx+b,求出 k、b 的值,再把点 B 的坐标代入反比例函数解析式求出 n 的值,即可得出答案;(2)求出直线 AB 与 y 轴的交点 C 的坐标,分别求出ACO 和BOC 的面积,然后相加即可;(3)根据 A、B 的坐标结合图象即可得出答案【解答】解:(1)把 A 点(1,4)分别代入反比例函数 y ,一次函数 yx+b,得 k14,1+b4,解得 k4,b3,点 B(4,n)也在反比例函数 y 的图象上,n 1;(2)如图,设直线 yx +3 与 y 轴的交点为 C,当 x0 时,y 3,C

    30、(0,3),S AOB S AOC +SBOC 31+ 347.5;(3)B(4,1),A(1,4),根据图象可知:当 x1 或4x0 时,一次函数值大于反比例函数值【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想20(10 分)已知:如图,BD 为O 的直径,点 A 是劣弧 BC 的中点,AD 交 BC 于点 E,连接AB(1)求证:AB 2AE AD;(2)过点 D 作O 的切线,与 BC 的延长线交于点 F,若 AE2,ED4,求 EF 的长【分析】(1)点 A

    31、是劣弧 BC 的中点,即可得ABC ADB,又由BADEAB,即可证得ABE ADB,根据相似三角形的对应边成比例,即可证得 AB2AEAD ;(2)由(1)求得 AB 的长,又由 BD 为O 的直径,即可得A90,由 DF 是O 的切线,可得BDF90,在 RtABD 中,求得 tanADB 的值,即可求得ADB 的度数,即可证得DEF 是等边三角形,则问题得解【解答】解:(1)证明:点 A 是劣弧 BC 的中点,ABCADB(1 分)又BADEAB,ABE ADB(2 分) AB 2AEAD(2)解:AE2,ED 4,ABE ADB, ,AB 2AEAD,AB 2AEADAE(AE +ED

    32、)2612AB2 (舍负)(4 分)BD 为 O 的直径,A90又DF 是 O 的切线,DFBD BDF90在 Rt ABD 中,tan ADB ,ADB30ABCADB30DEFAEB60,EDFBDF ADB90 3060F180DEF EDF60DEF 是等边三角形EFDE 4(5 分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识此题综合性较强,难度适中,解题的关键是数形结合思想的应用四填空题(共 5 小题,满分 20 分,每小题 4 分)21(4 分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间 5 天的游客数量,绘

    33、制了如图所示的折线统计图,则这五天游客数量的中位数为 23.4 【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得【解答】解:将这 5 天的人数从小到大排列为 21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为 23.4,故答案为:23.4【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念22(4 分)当 x5.4,y 2.4 时,代数式 x22xy+ y2 的值是 9 【分析】把代数式分解因式,然后把数值代入,计算得出答案即可【解答】解:x 22xy+y 2(xy) 2当 x5.4,

    34、y2.4 时,原式(5.42.4) 29,故答案为 9【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键23(4 分)如图,点 C 在以 AB 为直径的半圆上,AB8,CBA30,点 D 在线段 AB 上运动,点 E 与点 D 关于 AC 对称,DFDE 于点 D,并交 EC 的延长线于点 F则线段 EF 的最小值为 4 【分析】根据“点到直线之间,垂线段最短”可得 CDAB 时 CD 最小,由于 EF2CD,求出CD 的最小值就可求出 EF 的最小值【解答】解:连接 CD,当 CDAB 时,CD 取得最小值,AB 是半圆的直径,ACB90AB8,CBA30,AC4,BC

    35、 4 CDAB ,CBA30,CD BC2 根据“点到直线之间,垂线段最短”可得:点 D 在线段 AB 上运动时,CD 的最小值为 2 点 E 与点 D 关于 AC 对称,CECD,CEDCDE,EFD+CED90,CDF+CDE90,FCDF,CECDCF,EF2CD线段 EF 的最小值为 4 ,故答案为 4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形 30 度角性质等知识,解题的关键是求出 CD 的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型24(4 分)如图,把矩形 ABCD 绕着点 A 逆时针旋转 90可以得到矩形 AEFG,则图中三角形AFC 是 等

    36、腰直角 三角形【分析】根据旋转的性质知:两矩形是完全相同的矩形可知 ACAF,BAC+GAF90,则易证ACF 是等腰直角三角形【解答】解:在矩形 ABCD 中,根据勾股定理知 AC ,在矩形 AEFG 中,根据勾股定理知 AF 根据旋转的性质知,矩形 ABCD 和 AEFG 是两个大小完全相同的矩形,CAF90,ABAEGF,BCADAG,ACAF,ACF 是等腰直角三角形,故填:等腰直角【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质注意,旋转前后的图形全等25(4 分)二次函数 yax 2+bx+c 的图象如图所示,其对称轴与 x 轴交于点(1,0),图象上有三个点

    37、分别为(2,y 1),(3,y 2),(0,y 3),则 y1、y 2、y 3 的大小关系是 y 3y 2y 1 (用“”“”或“”连接)【分析】先确定抛物线对称轴为直线 x1,然后二次函数的性质,通过比较三个点到直线x1 的距离的大小得到 y1、y 2、y 3 的大小关系【解答】解:抛物线的对称轴与 x 轴交于点(1,0),抛物线的对称轴为直线 x1,点(2,y 1)到直线 x1 的距离最大,点(0,y 3)到直线 x1 的距离最小,y 3y 2y 1故答案为 y3y 2y 1【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式运用二次函数的性质是解决本题的关键五

    38、解答题(共 3 小题,满分 30 分)26(8 分)某商店准备进一批季节性小家电,每个进价为 40 元,经市场预测,销售定价为 50 元,可售出 400 个;定价每增加 1 元,销售量将减少 10 个设每个定价增加 x 元(1)写出售出一个可获得的利润是多少元(用含 x 的代数式表示)?(2)商店若准备获得利润 6000 元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润销售价进价列关系式;(2)总利润每个的利润销售量,销售量为 40010x,列方程求解,根据题意取舍;(3)利用函数的性质求最值【

    39、解答】解:由题意得:(1)50+x40x +10(元)(2)设每个定价增加 x 元列出方程为:(x+10)(40010x)6000解得:x 110 x220要使进货量较少,则每个定价为 70 元,应进货 200 个(3)设每个定价增加 x 元,获得利润为 y 元y(x+10)( 40010x ) 10x 2+300x+400010(x 15) 2+6250当 x15 时,y 有最大值为 6250所以每个定价为 65 元时得最大利润,可获得的最大利润是 6250 元(4 分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解此题的关键在列式表示销售价格和销售量27(10 分)【发现】如图

    40、,已知等边ABC ,将直角三角板的 60角顶点 D 任意放在 BC 边上(点 D 不与点 B、C 重合),使两边分别交线段 AB、AC 于点 E、F(1)若 AB6,AE 4,BD2,则 CF 4 ;(2)求证:EBDDCF【思考】若将图中的三角板的顶点 D 在 BC 边上移动,保持三角板与边 AB、AC 的两个交点E、F 都存在,连接 EF,如图所示,问:点 D 是否存在某一位置,使 ED 平分BEF 且 FD平分CFE?若存在,求出 的值;若不存在,请说明理由【探索】如图,在等腰ABC 中,ABAC ,点 O 为 BC 边的中点,将三角形透明纸板的一个顶点放在点 O 处(其中MONB),使

    41、两条边分别交边 AB、AC 于点 E、F(点 E、F 均不与ABC 的顶点重合),连接 EF设B,则AEF 与ABC 的周长之比为 1cos (用含 的表达式表示)【分析】(1)先求出 BE 的长度后发现 BEBD 的,又B 60,可知BDE 是等边三角形,可得BDE60,另外DEF60,可证得CDF 是等边三角形,从而CFCDBCBD;(2)证明EBDDCF,这个模型可称为“一线三等角相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过 D 作DMBE,DGEF,DNCF ,则 DMDGDN,从而证明BDMCDN 可得 BDCD;【

    42、探索】由已知不能求得 C ABCAB+BC +AC2AB+2OB2(m+mcos),则需要用 m 和 是三角函数表示出 CAEF ,C AEF AE+EF+AFAG+AH 2AG ;题中直接已知点 O 是 BC 的中点,应用(2)题的方法和结论,作 OGBE,ODEF,OHCF ,可得 EGED,FHDF ,则CAEF AE+EF+AFAG+ AH2AG ,而 AGABBO,从而可求得【解答】(1)解:ABC 是等边三角形,ABBCAC6,B C60AE4,BE2,则 BEBD ,BDE 是等边三角形,BED60,又EDF60,CDF180EDFB60,则CDFC60,CDF 是等边三角形,C

    43、FCDBCBD62 4故答案是:4;(2)证明:如图,EDF60,B60,CDF+BDE120,BED+BDE120,BEDCDF又BC60,EBDDCF;【思考】存在,如图,过 D 作 DMBE,DGEF,DNCF,垂足分别是 M、G、N,ED 平分BEF 且 FD 平分CFEDM DGDN又BC60,BMDCND90,BDMCDN ,BDCD,即点 D 是 BC 的中点, ;【探索】如图,连接 AO,作 OGBE,ODEF ,OHCF,垂足分别是 G、D、H则BGO CHO90,ABAC,O 是 BC 的中点,BC,OBOC,OBG OCH,OGOH,GBCH,BOGCOH 90,则GOH

    44、180(BOG+COH)2,EOFB由(2)题可猜想应用 EFED+DF GE+FH (可通过半角旋转证明),则 CAEF AE+ EF+AFAE+EG +FH+AFAG +AH2AG,设 ABm,则 OBmcos,GB m cos2 1cos故答案是:1cos【点评】本题主要考查的是三角形的综合应用,解答本题主要应用了角平分线的性质、等边三角形的性质、全等三角形的判定,相似三角形的判定与性质,锐角三角函数等知识点,综合性较强,难度较大,需要学生具备对所学几何知识的综合应用能力28(12 分)如图,已知二次函数 yax 2+bx3a 经过点 A(1,0),C(0,3),与 x 轴交于另一点 B

    45、,抛物线的顶点为 D(1)求此二次函数解析式;(2)连接 DC、BC、DB,求证:BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点 P,使得PDC 为等腰三角形?若存在,求出符合条件的点 P 的坐标;若不存在,请说明理由【分析】(1)将 A(1,0)、B(3,0)代入二次函数 yax 2+bx3a 求得 a、b 的值即可确定二次函数的解析式;(2)分别求得线段 BC、CD、BD 的长,利用勾股定理的逆定理进行判定即可;(3)分以 CD 为底和以 CD 为腰两种情况讨论运用两点间距离公式建立起 P 点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解【解答】解:(1)二次函数 yax 2+bx3a 经过点 A( 1,0)、C(0,3),根据题意,得 ,解得 ,抛物线的


    注意事项

    本文(2018年四川省成都市中考数学二模试卷(含答案解析))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开