1、2.2.2 向量减法运算及其几何意义,第二章 2.2 平面向量的线性运算,学习目标 1.理解相反向量的含义,向量减法的意义及减法法则. 2.掌握向量减法的几何意义. 3.能熟练地进行向量的加、减运算.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 相反向量,思考,实数a的相反数为a,向量a与a的关系应叫做什么?,答案 相反向量.,答案,梳理,(1)定义:如果两个向量长度 ,而方向 , 那么称这两个向量是相反向量. (2)性质:对于相反向量有:a(a)0. 若a,b互为相反向量,则ab,ab0. 零向量的相反向量仍是 .,相等,相反,零向量,思考,知识点二 向量的减法,根据向量减法
2、的定义,已知a,b如图,如何作出向量a,b的差向量ab?,答案,答案 (1)利用平行四边形法则.,(2)利用三角形法则.,知识点三 |a|b|,|ab|,|a|b|三者的关系,思考,在三角形中有两边之和大于第三边,两边之差小于第三边,结合这一性质及向量加、减法的几何意义,|a|b|,|ab|,|a|b|三者关系是怎样的?,答案,答案 它们之间的关系为|a|b|ab|a|b|.,梳理,当a与b共线且同向或a,b中至少有一个为零向量时,作法同上,如图(2),此时|ab|a|b|.当a与b共线且反向或a,b中至少有一个为零向量时,不妨设|a|b|,作法同上,如图(3),此时|ab|a|b|. 故对于
3、任意向量a,b,总有|a|b|ab|a|b|. 因为|ab|a(b)|, 所以|a|b|ab|a|b|, 即|a|b|ab|a|b|. 将两式结合起来即为|a|b|ab|a|b|.,题型探究,解答,类型一 向量减法的几何作图,例1 如图,已知向量a,b,c不共线,求作向量abc.,解答,引申探究 若本例条件不变,则abc如何作?,反思与感悟,求作两个向量的差向量时,当两个向量有共同始点,直接连接两个向量的终点,并指向被减向量,就得到两个向量的差向量;若两个向量的始点不重合,先通过平移使它们的始点重合,再作出差向量.,解答,跟踪训练1 如图所示,已知向量a,b,c,d,求作向量ab,cd.,例2
4、 化简下列式子:,类型二 向量减法法则的应用,解答,反思与感悟,向量减法的三角形法则的内容是:两向量相减,表示两向量起点的字母必须相同,这样两向量的差向量以减向量的终点字母为起点,以被减向量的终点的字母为终点.,解答,类型三 向量减法几何意义的应用,解答,反思与感悟,(2)在公式|a|b|ab|a|b|中,当a与b方向相反且|a|b|时,|a|b|ab|;当a与b方向相同时,|ab|a|b|. (3)在公式|a|b|ab|a|b|中,当a与b方向相同,且|a|b|时,|a|b|ab|;当a与b方向相反时,|ab|a|b|.,答案,解析,A.梯形 B.矩形 C.菱形 D.正方形,当堂训练,答案,
5、2,3,4,5,1,解析,A.ab和ab B.ab和ba C.ab和ba D.ba和ba,解析 由向量的加法、减法法则,得,故选B.,答案,2,3,4,5,1,2,3,4,5,1,答案,解析,2,答案,解析,2,3,4,5,1,4.若向量a与b满足|a|5,|b|12,则|ab|的最小值为_,|ab|的 最大值为_.,解析 由|a|b|ab|a|b|, |a|b|ab|a|b|可得.,7,17,解答,2,3,4,5,1,解 四边形ACDE是平行四边形,,规律与方法,1.向量减法的实质是向量加法的逆运算.利用相反向量的 定义, 就可以把减法转化为加法.即减去一个向量等于加上这个向量的相反向量.如aba(b). 2.在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,防止混淆.,本课结束,