欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    人教A版高中数学必修五《1.1.1 正弦定理(一)》课件

    • 资源ID:55434       资源大小:1.42MB        全文页数:30页
    • 资源格式: PPTX        下载积分:5积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付说明:
    本站最低充值10积分,下载本资源后余额将会存入您的账户,您可在我的个人中心查看。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教A版高中数学必修五《1.1.1 正弦定理(一)》课件

    1、第一章 1.1 正弦定理和余弦定理,1.1.1 正弦定理(一),1.掌握正弦定理的内容及其证明方法. 2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 正弦定理的推导,答案,在一般的ABC中, 仍然成立,课本采用边AB上的高CDbsin Aasin B来证明,思考2,答案,在一般的ABC中, 还成立吗?课本是如何说明的?,任意ABC中,都有 证明方法除课本提供的方法外,还可借助三角形面积公式,外接圆或向量来证明,梳理,知识点二 正弦定理的呈现形式,1. _2R(其中R是 );,ABC外接圆的半径,知识点三

    2、解三角形,一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的 .已知三角形的几个元素求其他元素的过程叫做 .,元素,解三角形,题型探究,例1 在钝角ABC中,证明正弦定理.,类型一 定理证明,证明,如图,过C作CDAB,垂足为D,D是BA延长线上一点, 根据正弦函数的定义知:,(1)本例用正弦函数定义沟通边与角内在联系,充分挖掘这些联系可以使你理解更深刻,记忆更牢固. (2)要证 只需证asin Bbsin A,而asin B,bsin A都对应CD.初看是神来之笔,仔细体会还是有迹可循的,通过体会思维的轨迹,可以提高我们的分析解题能力.,反思与感悟,跟踪训练1 如图,锐角A

    3、BC的外接圆O半径为R,证明,证明,连接BO并延长,交外接圆于点A,连接AC, 则圆周角AA. AB为直径,长度为2R, ACB90,,类型二 用正弦定理解三角形,解答,例2 在ABC中,已知A32.0,B81.8,a42.9 cm,解三角形.,根据三角形内角和定理,C180(AB)180(32.081.8)66.2.,反思与感悟,(1)正弦定理实际上是三个等式:,所以只要知道其中的三个就可以求另外一个. (2)具体地说,以下两种情形适用正弦定理: 已知三角形的任意两角与一边; 已知三角形的任意两边与其中一边的对角.,跟踪训练2 在ABC中,已知a18,B60,C75,求b的值.,解答,根据三

    4、角形内角和定理, A180(BC)180(6075)45.,命题角度1 化简证明问题 例3 在任意ABC中,求证:a(sin Bsin C)b(sin Csin A)c(sin Asin B)0.,证明,由正弦定理,令aksin A,bksin B,cksin C,k0.代入得: 左边k(sin Asin Bsin Asin Csin Bsin Csin Bsin Asin Csin Asin Csin B)0右边, 所以等式成立.,类型三 边角互化,命题角度2 运算求解问题 例4 在ABC中,A BC3,求ABC周长的最大值.,解答,设ABc,BCa,CAb.,反思与感悟,或正弦定理的变形公

    5、式aksin A,bksin B,cksin C(k0)能够使三角形边与角的关系相互转化.,跟踪训练3 在ABC中,角A、B、C的对边分别是a、b、c,若ABC123,求abc的值.,解答,ABC,ABC123,,当堂训练,得asin Bbsin A,故选C.,1.在ABC中,一定成立的等式是 A.asin Absin B B.acos Abcos B C.asin Bbsin A D.acos Bbcos A,答案,解析,1,2,3,4,2.在ABC中,sin Asin C,则ABC是 A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形,答案,解析,由sin Asin C,知ac, ABC为等腰三角形.,1,2,3,4,1,2,3,4,答案,解析,1,2,3,4,答案,解析,规律与方法,或aksin A,bksin B,cksin C(k0). 2.正弦定理的应用范围: (1)已知两角和任一边,求其他两边和一角. (2)已知两边和其中一边的对角,求另一边和两角. 3.利用正弦定理可以实现三角形中边角关系的相互转化:一方面可以化边为角,转化为三角函数问题来解决;另一方面,也可以化角为边,转化为代数问题来解决.,本课结束,


    注意事项

    本文(人教A版高中数学必修五《1.1.1 正弦定理(一)》课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开