欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    人教A版高中数学选修1-1《3.1.1变化率问题_3.1.2导数的概念》课件

    • 资源ID:55442       资源大小:6.11MB        全文页数:44页
    • 资源格式: PPTX        下载积分:5积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付说明:
    本站最低充值10积分,下载本资源后余额将会存入您的账户,您可在我的个人中心查看。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教A版高中数学选修1-1《3.1.1变化率问题_3.1.2导数的概念》课件

    1、3.1.1 变化率问题 3.1.2 导数的概念,第三章 3.1 变化率与导数,学习目标 1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. 3.会利用导数的定义求函数在某点处的导数.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 函数yf(x)从x1到x2的平均变化率,假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A是出发点,H是山顶.爬山路线用函数yf(x)表示.,自变量x表示某旅游者的水平位置,函数值yf(x)表示此时旅游者所在的高度.设点A的坐标为(x1,y1),点B的坐标为(x2,y2).,思考1 若旅游者从点A爬到点B,自变量x和函数值y

    2、的改变量分别是多少?,答案 自变量x的改变量为x2x1,记作x,函数值的改变量为y2y1,记作y.,思考2 怎样用数量刻画弯曲山路的陡峭程度?AB与BC哪一段更陡峭?,BC更陡峭.,梳理 (1)定义式: _,叫函数f(x)在区间x1,x2上的平均变化率. (2)实质: 的增量与 增量之比. (3)作用:刻画函数值在区间x1,x2上变化的 .,函数值,自变量,快慢,(4)平均变化率的几何意义: 设A(x1,f(x1),B(x2,f(x2)是曲线yf(x)上任意不同的两点,函数yf(x) 的平均变化率 为割线AB的斜率,如图所示.,特别提醒:x是变量x2在x1处的改变量,且x2是x1附近的任意一点

    3、,即xx2x10,但x可以为正,也可以为负.,知识点二 函数yf(x)在xx0处的瞬时变化率,某一点,平均变化率,特别提醒:“x无限趋近于0”的含义 x趋于0的距离要多近有多近,即|x0|可以小于给定的任意小的正数,且始终x0.,知识点三 导数的概念,瞬时变化率,f(x0),思考辨析 判断正误 1.函数在某一点的导数与x值的正、负无关.( ) 2.瞬时变化率是刻画某函数值在区间x1,x2上变化快慢的物理量.( ) 3.在导数的定义中,x,y都不可能为零.( ),题型探究,命题角度1 求函数的平均变化率 例1 求函数y2x23在x0到x0x之间的平均变化率,并求当x02,x 时该函数的平均变化率

    4、.,类型一 函数的平均变化率,解答,解 当自变量从x0变化到x0x时,函数的平均变化率为,反思与感悟 求平均变化率的主要步骤 (1)先计算函数值的改变量yf(x2)f(x1). (2)再计算自变量的改变量xx2x1.,跟踪训练1 (1)已知函数f(x)x22x5的图象上的一点A(1,6)及邻近一点B(1x,6y),则 _.,x,答案,解析,x.,(2)如图所示是函数yf(x)的图象,则函数f(x)在区间1,1上的平均变化 率为_;函数f(x)在区间0,2上的平均变化率为_.,答案,解析,解析 函数f(x)在区间1,1上的平均变化率为,所以函数f(x)在区间0,2上的平均变化率为,命题角度2 平

    5、均变化率的几何意义 例2 过曲线yf(x)x2x上的两点P(1,0)和Q(1x,y)作曲线的割线,已知割线PQ的斜率为2,求x的值.,解答,yf(1x)f(1) (1x)2(1x)(121)x(x)2,,又割线PQ的斜率为2,1x2,x1.,跟踪训练2 甲、乙两人走过的路程s1(t),s2(t)与时间t的关系如图所示,则在0,t0这个时间段内,甲、乙两人的平均速度v甲,v乙的关系是,A.v甲v乙 B.v甲v乙 C.v甲v乙 D.大小关系不确定,答案,解析,解析 设直线AC,BC的斜率分别为kAC,kBC,由平均变化率的几何意义知,s1(t)在0,t0上的平均变化率v甲kAC,s2(t)在0,t

    6、0上的平均变化率v乙kBC.因为kACkBC,所以v甲v乙.,(2)过曲线yf(x) 图象上一点(2,2)及邻近一点(2x,2y) 作割线,则当x0.5时割线的斜率为_.,答案,解析,解析 当x0.5时,2x2.5,,类型二 求瞬时速度,例3 某物体的运动路程s(单位:m)与时间t(单位:s)的关系可用函数s(t)t2t1表示,则物体在t1 s时的瞬时速度为_ m/s.,3,答案,解析,物体在t1处的瞬时变化率为3, 即物体在t1 s时的瞬时速度为3 m/s.,3t,,解答,引申探究 1.若本例中的条件不变,试求物体的初速度.,解 求物体的初速度,即求物体在t0时的瞬时速度.,1t,,物体在t

    7、0处的瞬时变化率为1, 即物体的初速度为1 m/s.,解答,2.若本例中的条件不变,试问物体在哪一时刻的瞬时速度为9 m/s.,解 设物体在t0时刻的瞬时速度为9 m/s,,(2t01)t,,则2t019,t04. 则物体在4 s时的瞬时速度为9 m/s.,反思与感悟 求运动物体瞬时速度的三个步骤 (1)求时间改变量t和位移改变量ss(t0t)s(t0).,跟踪训练3 一质点M按运动方程s(t)at21做直线运动(位移单位:m,时间单位:s),若质点M在t2 s时的瞬时速度为8 m/s,则常数a_.,2,解析 质点M在t2时的瞬时速度即为函数在t2处的瞬时变化率. 质点M在t2附近的平均变化率

    8、,答案,解析,例4 (1)设函数yf(x)在xx0处可导,且 a,则f(x0) _.,类型三 求函数在某一点处的导数,答案,解析,3f(x0)a,,解答,反思与感悟 (1)求函数yf(x)在点x0处的导数的三个步骤,简称:一差,二比,三极限.,(2)瞬时变化率的变形形式,跟踪训练4 已知f(x)3x2,f(x0)6,求x0.,解答,又f(x0)6,6x06,即x01.,达标检测,1.如果质点M按规律s3t2运动,则在时间段2,2.1中相应的平均速度是 A.4 B.4.1 C.0.41 D.3,答案,解析,1,2,3,4,5,答案,2.如图,函数yf(x)在A,B两点间的平均变化率是,1,2,3

    9、,4,5,解析,A.1 B.1 C.2 D.2,答案,解析,1,2,3,4,5,3.设函数f(x)在点x0附近有定义,且有f(x0x)f(x0)axb(x)2(a,b为常数),则 A.f(x)a B.f(x)b C.f(x0)a D.f(x0)b,4.若一物体的运动方程为s7t28,则其在t_时的瞬时速度为1.,1,2,3,4,5,答案,解析,1,2,3,4,5,5.已知函数f(x) 在x1处的导数为2,则实数a的值是_.,2,由题意知a2,a2.,答案,解析,理解平均变化率要注意以下几点:,规律与方法,(3)函数的平均变化率可以表现出函数的变化趋势.自变量的改变量x取值越小,越能准确体现函数的变化情况. 利用导数定义求导数时要特别注意:,(2)函数在x0处的导数f(x0)只与x0有关,与x无关.,


    注意事项

    本文(人教A版高中数学选修1-1《3.1.1变化率问题_3.1.2导数的概念》课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开