欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    人教A版高中数学选修1-1《第1课时双曲线的简单几何性质》课件

    • 资源ID:55449       资源大小:4.41MB        全文页数:45页
    • 资源格式: PPTX        下载积分:5积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付说明:
    本站最低充值10积分,下载本资源后余额将会存入您的账户,您可在我的个人中心查看。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教A版高中数学选修1-1《第1课时双曲线的简单几何性质》课件

    1、第1课时 双曲线的简单几何性质,第二章 2.2.2 双曲线的简单几何性质,学习目标 1.了解双曲线的简单性质,如范围、对称性、顶点、渐近线和离心率等. 2.能用双曲线的简单性质解决一些简单问题. 3.能区别椭圆与双曲线的性质.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 双曲线的几何性质,xa或xa,ya或ya,坐标轴,原点,A1(a,0),A2(a,0),A1(0,a),A2(0,a),知识点二 等轴双曲线,思考 在双曲线标准方程中,若ab,其渐近线方程是什么?,答案 yx.,梳理 实轴和虚轴 的双曲线叫做 ,它的渐近线是 .,等长,等轴双曲线,yx,思考辨析 判断正误 1.

    2、双曲线有四个顶点,分别是双曲线与其实轴及虚轴的交点.( ) 2.双曲线的离心率越大,双曲线的开口越开阔.( ),题型探究,例1 求双曲线9y24x236的顶点坐标、焦点坐标、实轴长、虚轴长、离心率、渐近线方程.,类型一 双曲线的几何性质,解答,因此顶点为A1(3,0),A2(3,0),,实轴长2a6,虚轴长2b4,,反思与感悟 讨论双曲线的几何性质,先要将双曲线方程化为标准形式,然后根据双曲线两种形式的特点得到几何性质.,跟踪训练1 求双曲线x23y2120的实轴长、虚轴长、焦点坐标、顶点坐标、渐近线方程、离心率.,解答,类型二 由双曲线的几何性质求标准方程,例2 求满足下列条件的双曲线的标准

    3、方程: (1)以直线2x3y0为渐近线,过点(1,2);,解答,解 方法一 由题意可设所求双曲线方程为4x29y2(0),将点(1,2)的坐标代入方程解得32.,解答,解答,解答,解 方法一 由椭圆方程可得焦点坐标为(3,0),(3,0),即c3且焦点在x轴上.,反思与感悟 (1)根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选择方程的形式. (2)巧设双曲线方程的六种方法与技巧.,渐近线为ykx的双曲线方程可设为k2x2y2(0). 渐近线为axby0的双曲线方程可设为a2x2b2y2(0).,解答,跟踪训练2 求满足下列条件的双曲线的

    4、标准方程: (1)焦点在x轴上,虚轴长为8,离心率为 ;,又c2a2b2,a3,b4,,解答,(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分;,解 由题意知,2a6,2c4a12, 又b2c2a2, a29,b227,,解答,双曲线为等轴双曲线, 则可设双曲线方程为x2y2(0), 将点(5,4)代入双曲线方程,得9,,类型三 与双曲线有关的离心率问题,命题角度1 求双曲线离心率的值 例3 双曲线的两条渐近线的夹角为60,则双曲线的离心率为,答案,解析,解析 因为双曲线的两条渐近线的夹角为60,所以有以下两种情况(以焦点在x轴上为例):(1)如图所示,其中一条渐近线的倾斜角为60;

    5、,当双曲线焦点在x轴上时,,因为b2c2a2,,同理,当双曲线焦点在y轴上时,,故选A.,反思与感悟 求双曲线离心率的常见方法,2,答案,解析,因为|AB|OE|OA|OB|,,解析 如图所示,在OAB中,,命题角度2 求离心率的取值范围 例4 已知F1,F2是双曲线 1(a,b0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若ABF2为钝角三角形,则该双曲线的离心率e的取值范围为,答案,解析,解析 由题设条件可知ABF2为等腰三角形,且AF2BF2, 只要AF2B为钝角即可.,故选B.,反思与感悟 求离心率的取值范围技巧 (1)根据条件建立a,b,c的不等式;,跟踪训练4

    6、若在双曲线 1(a0,b0)的右支上到原点O和右焦点F距离相等的点有两个,则双曲线的离心率的取值范围为_.,(2,),答案,解析,达标检测,答案,解析,1,2,3,4,5,答案,解析,2.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是,1,2,3,4,5,解析 由题意知,a5,b3,,答案,解析,1,2,3,4,5,4.双曲线x2y21的顶点到其渐近线的距离等于,1,2,3,4,5,答案,解析,1,2,3,4,5,答案,解析,1.渐近线是双曲线特有的性质,两方程联系密切,把双曲线的标准方程1(a0,b0)右边的常数“1”换为“0”,就是渐近线方程.反 之由渐近线方程axby0变为a2x2b2y2,再结合其他条件求得就可得双曲线方程. 2.准确画出几何图形是解决解析几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为精确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.,规律与方法,


    注意事项

    本文(人教A版高中数学选修1-1《第1课时双曲线的简单几何性质》课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开