1、第2课时 平面向量数量积的坐标运算,第2章 2.4 向量的数量积,学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算. 2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式. 3.能根据向量的坐标求向量的夹角及判定两个向量垂直.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 平面向量数量积的坐标表示,思考1,ii,jj,ij分别是多少?,答案 ii11cos 01,jj11cos 01,ij0.,答案,设i,j是两个互相垂直且分别与x轴、y轴的正半轴同向的单位向量.,思考2,取i,j为坐标平面内的一组基底,设a(x1,y1),
2、b(x2,y2),试将a,b用i,j表示,并计算ab.,答案 ax1iy1 j,bx2iy2 j, ab(x1iy1 j)(x2iy2 j)x1x2i2(x1y2x2y1)ijy1y2 j2x1x2y1y2.,答案,思考3,若ab,则a,b坐标间有何关系?,答案 abab0x1x2y1y20.,若向量a(x1,y1),b(x2,y2).,梳理,x1x2y1y2,abx1x2y1y20,知识点二 平面向量的模,思考1,若a(x,y),试将向量的模|a|用坐标表示.,答案 axiyj,x,yR, a2(xiyj)2(xi)22xy ij(yj)2x2i22xy ijy2j2. 又i21,j21,i
3、j0, a2x2y2,|a|2x2y2, |a| .,答案,思考2,若A(x1,y1),B(x2,y2),如何计算向量 的模?,答案,向量的模及两点间的距离,梳理,知识点三 向量的夹角,题型探究,类型一 平面向量数量积的坐标运算,例1 已知a与b同向,b(1,2),ab10. (1)求a的坐标;,解 设ab(,2)(0), 则有ab410, 2,a(2,4).,解答,(2)若c(2,1),求a(bc)及(ab)c.,解 bc12210,ab10, a(bc)0a0,(ab)c10(2,1)(20,10).,反思与感悟,此类题目是有关向量数量积的坐标运算,灵活应用基本公式是前提,设向量一般有两种
4、方法:一是直接设坐标,二是利用共线或垂直的关系设向量,还可以验证一般情况下(ab)ca(bc),即向量运算结合律一般不成立.,跟踪训练1 向量a(1,1),b(1,2),则(2ab)a_.,解析 因为a(1,1),b(1,2), 所以2ab2(1,1)(1,2)(1,0), 则(2ab)a(1,0)(1,1)1.,1,答案,解析,类型二 向量的模、夹角问题,解答,例2 在平面直角坐标系xOy中,O是原点(如图).已知点A(16,12),B(5,15).,解答,(2)求OAB.,OAB45.,反思与感悟,利用向量的数量积求两向量夹角的一般步骤: (1)利用向量的坐标求出这两个向量的数量积. (2
5、)利用|a| 求两向量的模. (3)代入夹角公式求cos ,并根据的范围确定的值.,跟踪训练2 已知a(1,1),b(,1),若a与b的夹角为钝角,求的取值范围.,解 a(1,1),b(,1),,解答,又a,b的夹角为钝角,,1且1. 的取值范围是(,1)(1,1).,类型三 向量垂直的坐标形式,例3 (1)已知a(3,2),b(1,0),若向量ab与a2b垂直,则实数的值为_.,解析 由向量ab与a2b垂直,得(ab)(a2b)0. 因为a(3,2),b(1,0), 所以(31,2)(1,2)0,,答案,解析,解答,反思与感悟,利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若
6、在关于三角形的问题中,未明确哪个角是直角时,要分类讨论.,1,解析,答案,(32t)2(1t)(1)0. t1.,当堂训练,1.已知a(3,1),b(1,2),则a与b的夹角为_.,1,2,3,4,5,又a,b的夹角范围为0,.,答案,解析,1,2,3,4,5,ABC30.,30,答案,解析,1,2,3,4,5,3.已知向量m(1,1),n(2,2),若(mn)(mn),则_.,解析 因为mn(23,3),mn(1,1), 由(mn)(mn), 可得(mn)(mn)(23,3)(1,1)260, 解得3.,3,答案,解析,4.已知平面向量a,b,若a(4,3),|b|1,且ab5,则向量b_.
7、,1,2,3,4,5,a,b方向相同,,答案,解析,5.已知a(4,3),b(1,2). (1)求a与b的夹角的余弦值;,1,2,3,4,5,解答,解 ab4(1)322,,(2)若(ab)(2ab),求实数的值.,1,2,3,4,5,解答,解 ab(4,32),2ab(7,8),(ab)(2ab), (ab)(2ab)7(4)8(32)0,,1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具. 2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.,规律与方法,3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a(x1,y1),b(x2,y2),则abx1y2x2y10,abx1x2y1y20. 4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.,本课结束,