欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    苏教版高中数学必修五课件:1.2 余弦定理(一)

    • 资源ID:55955       资源大小:1.40MB        全文页数:29页
    • 资源格式: PPTX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    苏教版高中数学必修五课件:1.2 余弦定理(一)

    1、第1章 解三角形,1.2 余弦定理(一),1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法. 2.会运用余弦定理解决两类基本的解三角形问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 余弦定理的推导,思考1,答案,根据勾股定理,若ABC中,C90,则c2a2b2a2b22abcos C. 试验证式对等边三角形还成立吗?你有什么猜想?,当abc时,C60, a2b22abcos Cc2c22cccos 60c2, 即式仍成立,据此猜想,对一般ABC,都有c2a2b22abcos C.,思考2,答案,在c2a2b22abcos C中,abcos C能解释为哪两个向

    2、量的数量积?你能由此证明思考1的猜想吗?,梳理 余弦定理的发现是基于已知两边及其夹角求第三边的需要.因为两边及其夹角恰好是确定平面向量一组基底的条件,所以能把第三边用基底表示进而求出模长. 另外,也可通过建立坐标系利用两点间距离公式证明余弦定理.,知识点二 余弦定理的呈现形式,b2c22bccos A,c2a22cacos B,a2b22abcos C,A,B,C,知识点三 适宜用余弦定理解决的两类基本的解三角形问题,每个公式右边都涉及三个量,两边及其夹角.故如果已知三角形的两边及其夹角,可用余弦定理解三角形.,思考1,答案,观察知识点二第1条中的公式结构,其中等号右边涉及几个量?你认为可用来

    3、解哪类三角形?,每个公式右边都涉及三个量,即三角形的三条边,故如果已知三角形的三边,也可用余弦定理解三角形.,思考2,答案,观察知识点二第2条中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?,梳理 余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.,题型探究,例1 已知ABC,BCa,ACb和角C,求c.,解答,类型一 余弦定理的证明,则|c|2cc(ab)(ab) aabb2ab a2b22|a|b|cos C. 所以c2a2b22abcos C.,所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要考察公式两边

    4、的结构特征,联系已经学过的知识,看有没有相似的地方.,反思与感悟,跟踪训练1 例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题?,解答,如图,以A为原点,边AB所在直线为x轴建立直角坐标系,则A(0,0),B(c,0), C(bcos A,bsin A), BC2b2cos2A2bccos Ac2b2sin2A, 即a2b2c22bccos A. 同理可证b2c2a22cacos B, c2a2b22abcos C.,类型二 用余弦定理解三角形,命题角度1 已知两边及其夹角 例2 已知ABC中,b3,c1,A60,求a和sin B.,解答,由余弦定理,得a2b2c22bccos

    5、 A 3212231cos 607,,反思与感悟,已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.,因为ba,所以BA,所以A为锐角,所以A30.,跟踪训练2 在ABC中,已知a2,b2 2 ,C15,求A.,解答,命题角度2 已知三边 例3 在ABC中,已知a 3 ,b1,c2.求A,B,C.,解答,因为0A0).,所以C为钝角,从而三角形为钝角三角形.,当堂训练,设另一边长为x,,1,2,3,4,答案,解析,abc, C为最小角,且C为锐角,,1,2,3,4,答案,解析,3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值 为 .,设顶角为C,周长

    6、为l,因为l5c, 所以ab2c, 由余弦定理,,1,2,3,4,答案,解析,由余弦定理及其推论知只有正确.,1,2,3,4,答案,解析,规律与方法,1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例. (1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角.,(2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.,本课结束,


    注意事项

    本文(苏教版高中数学必修五课件:1.2 余弦定理(一))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开