欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    人教B版高中数学必修一课件:2.1.4 函数的奇偶性

    • 资源ID:56066       资源大小:709.99KB        全文页数:26页
    • 资源格式: PPTX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教B版高中数学必修一课件:2.1.4 函数的奇偶性

    1、2.1 函 数 2.1.4 函数的奇偶性,学习目标 1.结合具体函数,了解函数奇偶性的含义. 2.掌握判断函数奇偶性的方法,了解奇偶性与函数图象对称性之间的关系. 3.会利用函数的奇偶性解决简单问题.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.关于y轴对称的点的坐标,横坐标 ,纵坐标 ;关于原点对称的点的坐标,横坐标 ,纵坐标 . 2.如图所示,它们分别是哪种对称的图形?答案 第一个既是轴对称图形、又是中心对称图形,第二个和第三个图形为轴对称图形.,互为相反数,互为相反数,相等,互为相反数,3.观察函数f(x)x和f(x

    2、) 的图象(如图),你能发现两个函数图象有什么共同特征吗?,答案 图象关于原点对称.,预习导引 1.函数奇偶性的定义 (1)奇函数:设函数yf(x)的定义域为D,如果对D内的任意一个x,都有xD,且f(x) ,则这个函数叫做奇函数. (2)设函数yg(x)的定义域为D,如果对D内的任意一个x,都有xD,且g(x) ,则这个函数叫做偶函数.,g(x),f(x),2.奇、偶函数图象的对称性 (1)奇函数的图象关于 成中心对称图形,反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是 . (2)偶函数的图象是以 为对称轴的轴对称图形;反之,如果一个函数的图象关于y轴对称,则这个

    3、函数是 .,偶函数,原点,奇函数,y轴,要点一 判断函数的奇偶性 例1 判断下列函数的奇偶性: (1)f(x)2|x|; 解 函数f(x)的定义域为R,关于原点对称,又f(x)2|x|2|x|f(x), f(x)为偶函数.,解 函数f(x)的定义域为1,1,关于原点对称,且f(x)0,又f(x)f(x),f(x)f(x), f(x)既是奇函数又是偶函数.,解 函数f(x)的定义域为x|x1,不关于原点对称, f(x)是非奇非偶函数.,解 f(x)的定义域是(,0)(0,),关于原点对称. 当x0时,x0, f(x)1(x)1xf(x). 综上可知,对于x(,0)(0,),都有f(x)f(x),

    4、f(x)为偶函数.,规律方法 判断函数奇偶性的方法:(1)定义法:若函数定义域不关于原点对称,则函数为非奇非偶函数;若函数定义域关于原点对称,则应进一步判断f(x)是否等于f(x),或判断f(x)f(x)是否等于0,从而确定奇偶性.(2)图象法:若函数图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数为偶函数.(3)分段函数的奇偶性应分段说明f(x)与f(x)的关系,只有当对称区间上的对应关系满足同样的关系时,才能判定函数的奇偶性.,跟踪演练1 (1)下列函数为奇函数的是( ),解析 A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数.,C,(2)若f(x

    5、)ax2bxc(a0)是偶函数,则g(x)ax3bx2cx是( ) A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 解析 f(x)ax2bxc是偶函数, f(x)f(x),得b0.g(x)ax3cx. g(x)a(x) 3c(x)g(x), g(x)为奇函数.,A,要点二 利用函数奇偶性研究函数的图象 例2 已知奇函数f(x)的定义域为5,5,且在区间0,5上的图象如下图所示,则使函数值y0的x的取值集合为_.,解析 因为函数f(x)是奇函数,所以yf(x)在5,5上的图象关于原点对称.由yf(x)在0,5上的图象,可知它在5,0上的图象,如图所示.由图象知,使函数值y0时

    6、此函数为增函数,又该函数为奇函数.,D,1,2,3,4,5,3.函数f(x)是定义在R上的奇函数,当x0时,f(x)x1,则当x0时,f(x)的解析式为( ) A.f(x)x1 B.f(x)x1 C.f(x)x1 D.f(x)x1 解析 设x0,则x0.f(x)x1,又函数f(x)是奇函数.f(x)f(x)x1,f(x)x1(x0).,B,1,2,3,4,5,4.已知函数yf(x)为偶函数,其图象与x轴有四个交点,则方程f(x)0的所有实根之和是( ) A.0 B.1 C.2 D.4 解析 由偶函数的图象关于y轴对称,所以偶函数的图象与x轴的交点也关于y轴对称,因此,四个交点中,有两个在x轴的负半轴上,另两个在x轴的正半轴上,所以四个实根的和为0.,A,1,2,3,4,5,5.若f(x)(xa)(x4)为偶函数,则实数a_. 解析 由f(x)(xa)(x4) 得f(x)x2(a4)x4a,若f(x)为偶函数, 则a40,即a4.,5,1,2,3,4,4,课堂小结 1.定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的一个条件,f(x)f(x)或f(x)f(x)是定义域上的恒等式.,3.(1)若f(x)0且f(x)的定义域关于原点对称,则f(x)既是奇函数又是偶函数. (2)奇函数在对称的两个区间上有相同的单调性;偶函数在对称的两个区间上有相反的单调性.,


    注意事项

    本文(人教B版高中数学必修一课件:2.1.4 函数的奇偶性)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开