欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年广西防城港市防城区中考数学二模试卷(含答案解析)

    • 资源ID:57343       资源大小:317.50KB        全文页数:17页
    • 资源格式: DOC        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年广西防城港市防城区中考数学二模试卷(含答案解析)

    1、2019 年广西防城港市防城区中考数学二模试卷一选择题(共 12 小题,满分 36 分,每小题 3 分)1若实数 a、b 互为相反数,则下列等式中成立的是( )Aab0 Ba+b0 Cab1 Dab12下列实数中,无理数是( )A1 B C D3.3中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口 44 亿,这个数用科学记数法表示为( )A4410 8 B4.410 9 C4.410 8 D4.410 104计算(x 2) 3 的结果是( )Ax 6 Bx 6 Cx 5 Dx 85一个多边形的内角和是 720,这个多边形的边数是( )A6 B7 C8

    2、 D96如图,有一电路 AB 是由图示的开关控制,闭合 a,b,c,d,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A B C D7已知ABCDEF,面积比为 9:4,则ABC 与 DEF 的对应角平分线之比为( )A3:4 B2:3 C9:16 D3:28已知一组数据 1,5,6,5,5,6,6,6,则下列说法正确的是( )A众数是 5 B中位数是 5 C平均数是 5 D极差是 49下列图形中,既是轴对称图形又是中心对称图形的是( )A BC D10从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A圆柱 B圆锥 C棱锥 D球11BAC

    3、放在正方形网格纸的位置如图,则 tanBAC 的值为( )A B C D12二次函数 yax 2+bx+c( a、b、c 为常数且 a0)中的 x 与 y 的部分对应值如下表,该抛物线的对称轴是直线( )x 1 0 1 3y 1 3 5 3Ax0 Bx1 Cx1.5 Dx 2二填空题(共 6 小题,满分 18 分,每小题 3 分)13计算 2 14解分式方程: 得 15因式分解:a 3ab 2 16如图,在O 中,AB 为直径,C、D 为O 上两点,若C25,则ABD 17如图,在平面直角坐标系中,已知点 O(0,0),A (6,0),B(0,8),以某点为位似中心,作出AOB 的位似 CDE

    4、,则位似中心的坐标为 18如图,把ABC 沿 EF 翻折,叠合后的图形如图若A60,195,则2 的度数为 三解答题(共 8 小题,满分 66 分)19(6 分)计算(1) + ;(2)2 2+(1) 2019( 4) 0|5|20(6 分)解不等式组 21(6 分)如图,在ABC 中,ABAC ,D 是底边 BC 的中点,作 DEAB 于 E,DFAC 于 F求证:DEDF证明:ABAC,B C在BDE 和CDF 中,B C ,BEDCFD,BDCD,BDECDFDEDF上面的证明过程是否正确?若正确,请写出、 和的推理根据(2)请你写出另一种证明此题的方法22(8 分)某市为提高学生参与体

    5、育活动的积极性,围绕“你喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查下面是根据调查结果绘制成的统计图(不完整)请你根据图中提供的信息解答下列问题(1)本次抽样调查一共调查调查了多少名学生?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢健身操运动”的学生数对应扇形的圆心角;(3)请将条形图补充完整;(4)若该市 2018 年约有初一新生 21000 人,请你估计全市本届学生中“最喜欢足球运动”的学生有多少人?23(9 分)如图,在O 中,直径 CD 垂直于不过圆心 O 的弦 AB,垂足为点 N,连接 AC,BC,点 E 在 AB 上,且 AECE(1)求证:ABCA

    6、CE;(2)过点 B 作O 的切线交 EC 的延长线于点 P,证明 PBPE;(3)在第(2)问的基础上,设O 半径为 2 ,若点 N 为 OC 中点,点 Q 在O 上,求线段PQ 的最大值24(9 分)如图是某市出租车单程收费 y(元)与行驶路程 x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使路程为 8 千米时,收费应为 元;(2)从图象上你能获得哪些信息?(请写出 2 条) ; (3)求出收费 y(元)与行使路程 x(千米)(x 3)之间的函数关系25(10 分)如图 1,在OAB 中,OAB90,AOB30,OB 10以 OB 为边,在OAB 外作等边 OBC,D 是

    7、OB 的中点,连接 AD 并延长交 OC 于 E(1)求证:四边形 ABCE 是平行四边形;(2)如图 2,将图 1 中的四边形 ABCO 折叠,使点 C 与点 A 重合,折痕为 FG,求 OG 的长26(12 分)如图,在平面直角坐标系 xOy 中,已知正比例函数 y12x 的图象与反比例函数y2 的图象交于 A(1 ,n),B 两点(1)求出反比例函数的解析式及点 B 的坐标;(2)观察图象,请直接写出满足 y2 的取值范围;(3)点 P 是第四象限内反比例函数的图象上一点,若POB 的面积为 1,请直接写出点 P 的横坐标2019 年广西防城港市防城区中考数学二模试卷参考答案与试题解析一

    8、选择题(共 12 小题,满分 36 分,每小题 3 分)1【分析】根据只有符号不同的两数叫做互为相反数解答【解答】解:实数 a、b 互为相反数,a+b0故选:B【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键2【分析】根据无理数的三种形式求解【解答】解:A1 是整数,属于有理数;B 是无理数;C 4 是整数,属于有理数;D3. 是无限循环小数,属于有理数;故选:B【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:开方开不尽的数, 无限不循环小数, 含有 的数3【分析】用科学记数法表示较大的数时,一般形式为 a10n,其中 1|a| 10,n 为整数,据此判断即

    9、可【解答】解:44 亿4.410 9故选:B【点评】此题主要考查了用科学记数法表示较大的数,一般形式为 a10n,其中 1|a| 10,确定 a 与 n 的值是解题的关键4【分析】根据积的乘方和幂的乘方的运算法则计算可得【解答】解:(x 2) 3x 6,故选:A【点评】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方的运算法则5【分析】设这个多边形的边数为 n,根据多边形的内角和定理得到(n2)180720,然后解方程即可【解答】解:设这个多边形的边数为 n,则(n2)180720,解得 n6,故这个多边形为六边形故选:A【点评】本题考查了多边形的内角和定理,关键是根据 n 边形的内角和为(

    10、n2)180解答6【分析】只有闭合两条线路里的两个才能形成通路列举出所有情况,看所求的情况占总情况的多少即可【解答】解:列表得:(a,e ) (b,e ) (c,e) (d,e ) (a,d) (b,d) (c,d) (e,d)(a,c ) (b,c ) (d,c ) (e,c)(a,b) (c,b) (d,b) (e,b) (b,a) (c,a) (d,a) (e,a)一共有 20 种情况,使电路形成通路的有 12 种情况,使电路形成通路的概率是 ,故选:C【点评】本题结合初中物理的“电路”考查了有关概率的知识列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:

    11、概率所求情况数与总情况数之比7【分析】根据相似三角形的性质求出相似比,得到对应角的角平分线之比【解答】解:ABCDEF,ABC 与DEF 的面积比为 9:4,ABC 与DEF 的相似比为 3:2,ABC 与DEF 对应角的角平分线之比为 3:2,故选:D【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比8【分析】根据平均数、中位数、众数以及极差的计算法则进行计算即可【解答】解:把数据 1,5,6,5,5,6,6,6,按从小到大排列为 1,5,5,5,6,6,6,6,中位数 5.

    12、5,众数为 6,平均数 5,极差为615,故 C 正确,故选:C【点评】本题考查了平均数,中位数,方差的意义平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量9【分析】根据轴对称图形、中心对称图形的定义即可判断【解答】解:A此图形仅仅是轴对称图形,不符合题意;B此图形仅仅是轴对称图形,不符合题意;C此图形既是轴对称图形,又是中心对称图形,符合题意;D此图形仅仅是轴对称图形,不符合题意;故选:C【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对

    13、折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转 180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形10【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱【解答】解:主视图和左视图都是长方形,此几何体为柱体,俯视图是一个圆,此几何体为圆柱故选:A【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状11【分析】连接 CD,再利用勾股定理分别计算出 AD、AC、BD 的长,然后再根据勾股定理逆定理证明ADC90,再利用三角函数定义可

    14、得答案【解答】解:连接 CD,如图:,CD ,AC ,ADC90,tanBAC 故选:D【点评】此题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明ADC9012【分析】利用二次函数的对称性,结合对应点坐标变化得出其对称轴即可【解答】解:由表知当 x0 和 x3 时,y 3,该抛物线的对称轴是直线 x ,即 x1.5,故选:C【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的对称性,本题属于基础题型二填空题(共 6 小题,满分 18 分,每小题 3 分)13【分析】直接化简二次根式进而合并得出答案【解答】解:2 2 故答案为: 【点评】此题主要考查了二次根式的加

    15、减运算,正确化简二次根式是解题关键14【分析】分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【解答】解:去分母得:3xx2,解得:x1,经检验 x1 是分式方程的解,故答案为:x1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验15【分析】观察原式 a3ab 2,找到公因式 a,提出公因式后发现 a2b 2 是平方差公式,利用平方差公式继续分解可得【解答】解:a 3ab 2a(a 2b 2)a(a+b)(ab)【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式本题考点:因式分解(提取公因式法、应用公式法)1

    16、6【分析】由已知可求得A 的度数,再根据圆周角定理及三角形内角和定理即可求得ABD 的度数【解答】解:连接 ADC25(已知),CA25;AB 是O 的直径,ADB90(直径所对的圆周角是直角),ABD902565故答案是:65【点评】本题考查了圆周角定理解答该题时,需熟练运用圆周角定理及其推论17【分析】直接利用位似图形的性质得出位似中心【解答】解:如图所示,点 P 即为位似中点,其坐标为(2,2),故答案为:(2,2)【点评】此题主要考查了位似变换,正确掌握位似中心的定义是解题关键18【分析】先根据折叠的性质得到BEFBEF,CFECFE,再根据邻补角的定义得到 180AEF1+ AEF,

    17、180AFE 2+AFE ,则可计算出AEF 42.5,再根据三角形内角和定理计算出AFE77.5,然后把AFE77.5代入180AFE2+ AFE 即可得到2 的度数【解答】解:如图,ABC 沿 EF 翻折,BEF BEF,CFECFE,180AEF1+ AEF,180AFE2+ AFE,195,AEF (18095 )42.5,A+AEF +AFE180 ,AFE 1806042.577.5,18077.52+77.5,225故答案为 25【点评】本题考查了折叠的性质:翻折变换(折叠问题)实质上就是轴对称变换;折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边

    18、和对应角相等三解答题(共 8 小题,满分 66 分)19【分析】(1)先计算算术平方根和立方根,再计算加减可得;(2)先计算乘方、零指数幂和绝对值,再计算乘法和加减【解答】解:(1)原式22 ;(2)原式41154152【点评】本题主要考查实数的运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则20【分析】求得每一个不等式的解集,再进一步求得公共部分即可【解答】解:解不等式 2xx+4,得:x 4,解不等式 x1,得:x3,则不等式组的解集为 3x4【点评】此题考查一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”21【

    19、分析】(1)是利用三角形全等证明两边相等;(2)连接 AD,根据等腰三角形三线合一的性质和角平分线的性质求证即可【解答】解:(1)等角对等边, AAS,全等三角形的对应边相等;(2)连接 AD,ABAC,D 是 BC 的中点,AD 平分BAC(等腰三角形三线合一),又DEAB 于 E,DFAC 于 F,DEDF 【点评】此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等22【分析】(1)根据条形图可得健身操人数为 100,根据扇形图可得健身操人数占 20%,因此利用健身人数除以所占百分数可得本次抽样调查一共调查调查了多少名学生;(2)计算出跳绳人数、其它人数,用总数减去喜欢各项运

    20、动的人数可得喜欢篮球的人数,再利用 360乘以“最喜欢足球运动”的学生数所占比例即可;(3)根据以上所求结果补全图形即可;(4)利用样本估计总体的方法,用总人数 21000 人乘以“最喜欢足球运动”的学生在样本中所占比例即可【解答】解:(1)本次抽样调查的总人数为 10020%500(名);(2)跳绳的人数为 50018%90(名),其它的人数为 50020%100(名),篮球的人数为 500(60+90+100+100)150(名),则扇形统计图中“最喜欢健身操运动”的学生数对应扇形的圆心角为 360 72;(3)补全条形图如下:(4)估计全市本届学生中“最喜欢足球运动”的学生有 21000

    21、 2520(名)【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23【分析】(1)因为直径 CD 垂直于不过圆心 O 的弦 AB,垂足为点 N,所以 ,所以CAE ABC,因为 AECE ,所以CAE ACE,所以ABCACE;(2)连接 OB,设CAEACEABC x ,通过计算可得PEBPBE2x,所以PBPE;(3)连接 OP,证明OBC 和PBE 为等边三角形,因为O 半径为 2 ,可得BN3,NE1,即 PBBE4,在 RtPBO 中求得

    22、PO 的长,即可得出 PQ 的最大值【解答】解:(1)证明:直径 CD 垂直于不过圆心 O 的弦 AB,垂足为点 N, ,CAEABC,AECE,CAEACE,ABCACE;(2)如图,连接 OB,过点 B 作O 的切线交 EC 的延长线于点 P,OBP90,设CAEACEABC x,则PEB 2x,OBOC,ABCD,OBCOCB90x,BOC1802(90x)2x,OBE902x ,PBE 90(902x)2x,PEB PBE,PBPE;(3)如图,连接 OP,点 N 为 OC 中点, ABCD,AB 是 CD 的垂直平分线,BCOBOC,OBC 为等边三角形, O 半径为 2 ,CN ,

    23、CAEACE BOC30,CEN 60 ,PBE 2CAB60,PBE 为等边三角形,BN 3,NE 1,PBBEBN+ NE3+14,PO ,PQ 的最大值为 PO+ 【点评】本题考查圆的切线的性质,等边三角形的判定和性质,圆周角定理,勾股定理解题的关键是掌握圆的切线的性质24【分析】(1)根据观察函数的纵坐标,可得行驶 8 千米时的收费;(2)根据观察函数图象,可得 3 千米内的收费,超过 3 千米后每千米的收费;(3)根据待定系数法,可得函数解析式【解答】解:(1)当行使路程为 8 千米时,收费应为 11 元;(2)从图象上你能获得哪些信息?(请写出 2 条)3 千米内收费 5 元;超过

    24、 3 千米,每千米收费 1.2 元;(3)设函数关系式为 ykx+b (x3,k 是常数,b 是常数, k0),函数图象经过(3,5),(8,11),解得 故收费 y(元)与行使路程 x(千米)(x 3)之间的函数关系 y1.2x +1.4 (x3)【点评】本题考查了一次函数的应用,观察函数图象是解(1)、(2)的关键;待定系数法是求一次函数解析式的关键25【分析】(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得 DODA,再根据等边对等角可得DAODOA30,进而算出AEO60,再证明 BCAE,COAB,进而证出四边形 ABCE 是平行四边形;(2)设 OGx ,由折叠可得: AG

    25、GC10x,再利用三角函数可计算出 AO,再利用勾股定理计算出 OG 的长即可【解答】(1)证明:Rt OAB 中,D 为 OB 的中点,AD OB,ODBD OB,DODA ,DAO DOA30, EOA90,AEO60,又OBC 为等边三角形,BCOAEO60,BCAE,BAOCOA90,COAB ,四边形 ABCE 是平行四边形;(2)解:设 OGx ,由折叠可得: AGGC10x,在 Rt ABO 中,OAB90,AOB 30,BO10,AOBO cos3010 5 ,在 Rt OAG 中,OG 2+OA2 AG2,x2+(5 ) 2(10x) 2,解得:x ,OG 【点评】此题主要考

    26、查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理26【分析】(1)把 A(1,n)代入 y2x ,可得 A(1,2),把 A(1,2)代入y ,可得反比例函数的表达式为 y ,再根据点 B 与点 A 关于原点对称,即可得到 B 的坐标;(2)观察函数图象即可求解;(3)设 P(m, ),根据 S 梯形 MBPNS POB 1,可得方程 (2+ )(m1)1 或(2+ )(1m)1,求得 m 的值,即可得到点 P 的横坐标【解答】解:(1)把 A(1,n)代入 y2x ,可得 n2,A(1,2),把 A(1,2)代入 y ,可得 k2,反比例函数的表达式为 y ,点 B 与点 A 关于原点对称,B(1,2)(2)A(1,2),y2 的取值范围是 x1 或 x0;(3)作 BMx 轴于 M,PN x 轴于 N,S 梯形 MBPN SPOB 1,设 P(m, ),则 (2+ )(m 1)1 或 (2+ )(1m )1整理得,m 2m10 或 m2+m+10,解得 m 或 m ,P 点的横坐标为 【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式


    注意事项

    本文(2019年广西防城港市防城区中考数学二模试卷(含答案解析))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开