欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018年山东省烟台市中考数学试卷含答案解析

    • 资源ID:5805       资源大小:556.50KB        全文页数:33页
    • 资源格式: DOC        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年山东省烟台市中考数学试卷含答案解析

    1、2018 年山东省烟台市中考数学试卷一、选择题(本题共 12 个小题,每小题 3 分,满分 36 分)每小题都给出标号为A,B ,C ,D 四个备选答案,其中有且只有一个是正确的。1 (3 分) 的倒数是( )A3 B3 C D2 (3 分)在学习图形变化的简单应用这一节时,老师要求同学们利用图形变化设计图案下列设计的图案中,是中心对称图形但不是轴对称图形的是( )A B C D3 (3 分)2018 年政府工作报告指出,过去五年来,我国经济实力跃上新台阶国内生产总值从 54 万亿元增加到 82.7 万亿元,稳居世界第二,82.7 万亿用科学记数法表示为( )A0.827 1014 B82.7

    2、10 12 C8.27 1013 D8.2710 144 (3 分)由 5 个棱长为 1 的小正方体组成的几何体如图放置,一面着地,两面靠墙如果要将露出来的部分涂色,则涂色部分的面积为( )A9 B11 C14 D185 (3 分)甲、乙、丙、丁 4 支仪仗队队员身高的平均数及方差如下表所示:甲 乙 丙 丁平均数(cm)177 178 178 179方差 0.9 1.6 1.1 0.6哪支仪仗队的身高更为整齐?( )A甲 B乙 C丙 D丁6 (3 分)下列说法正确的是( )A367 人中至少有 2 人生日相同B任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C天气预报说明天的降水概率为 90%,

    3、则明天一定会下雨D某种彩票中奖的概率是 1%,则买 100 张彩票一定有 1 张中奖7 (3 分)利用计算器求值时,小明将按键顺序为显示结果记为 a,的显示结果记为 b则 a, b 的大小关系为( )Aa b Bab Ca=b D不能比较8 (3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )A28 B29 C30 D319 (3 分)对角线长分别为 6 和 8 的菱形 ABCD 如图所示,点 O 为对角线的交点,过点 O 折叠菱形,使 B,B两点重合,MN 是折痕若 BM=1,则 CN 的长为( )A7

    4、 B6 C5 D410 (3 分)如图,四边形 ABCD 内接于O ,点 I 是ABC 的内心,AIC=124 ,点 E 在 AD 的延长线上,则CDE 的度数为( )A56 B62 C68 D7811 (3 分)如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于点 A(1,0) ,B(3 ,0) 下列结论: 2ab=0;(a+c) 2b 2;当 1x 3 时,y 0;当 a=1 时,将抛物线先向上平移 2 个单位,再向右平移 1 个单位,得到抛物线y=(x 2) 22其中正确的是( )A B C D12 (3 分)如图,矩形 ABCD 中,AB=8cm,BC=6cm,点 P 从点 A

    5、 出发,以lcm/s 的速度沿 ADC 方向匀速运动,同时点 Q 从点 A 出发,以 2cm/s 的速度沿 ABC 方向匀速运动,当一个点到达点 C 时,另一个点也随之停止设运动时间为 t(s) ,APQ 的面积为 S(cm 2) ,下列能大致反映 S 与 t 之间函数关系的图象是( )A B CD二、填空题(本大题共 6 个小题,每小题 3 分,满分 18 分)13 (3 分) ( 3.14) 0+tan60= 14 (3 分) 与最简二次根式 5 是同类二次根式,则 a= 15 (3 分)如图,反比例函数 y= 的图象经过ABCD 对角线的交点 P,已知点A,C,D 在坐标轴上,BDDC

    6、,ABCD 的面积为 6,则 k= 16 (3 分)如图,方格纸上每个小正方形的边长均为 1 个单位长度,点O,A,B,C 在格点(两条网格线的交点叫格点)上,以点 O 为原点建立直角坐标系,则过 A,B,C 三点的圆的圆心坐标为 17 (3 分)已知关于 x 的一元二次方程 x24x+m1=0 的实数根 x1,x 2,满足3x1x2x1x22,则 m 的取值范围是 18 (3 分)如图,点 O 为正六边形 ABCDEF 的中心,点 M 为 AF 中点,以点 O为圆心,以 OM 的长为半径画弧得到扇形 MON,点 N 在 BC 上;以点 E 为圆心,以 DE 的长为半径画弧得到扇形 DEF,把

    7、扇形 MON 的两条半径 OM,ON 重合,围成圆锥,将此圆锥的底面半径记为 r1;将扇形 DEF 以同样方法围成的圆锥的底面半径记为 r2,则 r1:r 2= 三、解答题(本大题共 7 个小题,满分 66 分)19 (6 分)先化简,再求值:(1+ ) ,其中 x 满足 x22x5=020 (8 分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示 “支付宝”支付的扇形圆心

    8、角的度数为 ;(2)将条形统计图补充完整观察此图,支付方式的“众数”是“ ”;(3)在一次购物中,小明和小亮都想从“微信”、 “支付宝 ”、 “银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率21 (8 分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路 l,其间设有区间测速,所有车辆限速 40 千米/小时数学实践活动小组设计了如下活动:在 l 上确定 A, B 两点,并在 AB 路段进行区间测速在 l 外取一点P,作 PCl ,垂足为点 C测得 PC=3

    9、0 米,APC=71,BPC=35上午 9 时测得一汽车从点 A 到点 B 用时 6 秒,请你用所学的数学知识说明该车是否超速 (参考数据:sin350.57 ,cos35 0.82 ,tan350.70,sin710.95,cos710.33,tan712.90)22 (9 分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“ 共享单车”这批单车分为 A,B 两种不同款型,其中 A 型车单价400 元, B 型车单价 320 元(1)今年年初, “共享单车”试点投放在某市中心城区正式启动投放 A,B 两种款型的单车共 100 辆,总价值 36800 元试问本次试点投

    10、放的 A 型车与 B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开按照试点投放中 A,B 两车型的数量比进行投放,且投资总价值不低于 184 万元请问城区 10 万人口平均每 100 人至少享有 A 型车与 B 型车各多少辆?23 (10 分)如图,已知 D,E 分别为ABC 的边 AB,BC 上两点,点 A,C,E在D 上,点 B,D 在E 上F 为 上一点,连接 FE 并延长交 AC 的延长线于点 N,交 AB 于点 M(1)若EBD 为 ,请将 CAD 用含 的代数式表示;(2)若 EM=MB,请说明当CAD 为多少度时,直线 EF 为D

    11、 的切线;(3)在(2)的条件下,若 AD= ,求 的值24 (11 分) 【问题解决】一节数学课上,老师提出了这样一个问题:如图 1,点 P 是正方形 ABCD 内一点,PA=1,PB=2,PC=3你能求出APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将BPC 绕点 B 逆时针旋转 90,得到 BPA,连接 PP,求出APB的度数;思路二:将APB 绕点 B 顺时针旋转 90,得到CPB,连接 PP,求出APB的度数请参考小明的思路,任选一种写出完整的解答过程【类比探究】如图 2,若点 P 是正方形 ABCD 外一点,PA=3 ,PB=1 ,PC= ,求APB 的度数2

    12、5 (14 分)如图 1,抛物线 y=ax2+2x+c 与 x 轴交于 A( 4,0) ,B(1,0)两点,过点 B 的直线 y=kx+ 分别与 y 轴及抛物线交于点 C,D(1)求直线和抛物线的表达式;(2)动点 P 从点 O 出发,在 x 轴的负半轴上以每秒 1 个单位长度的速度向左匀速运动,设运动时间为 t 秒,当 t 为何值时, PDC 为直角三角形?请直接写出所有满足条件的 t 的值;(3)如图 2,将直线 BD 沿 y 轴向下平移 4 个单位后,与 x 轴,y 轴分别交于E, F 两点,在抛物线的对称轴上是否存在点 M,在直线 EF 上是否存在点 N,使 DM+MN 的值最小?若存

    13、在,求出其最小值及点 M,N 的坐标;若不存在,请说明理由2018 年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共 12 个小题,每小题 3 分,满分 36 分)每小题都给出标号为A,B ,C ,D 四个备选答案,其中有且只有一个是正确的。1 (3 分) 的倒数是( )A3 B3 C D【分析】根据乘积为 1 的两个数互为倒数,可得一个数的倒数【解答】解: 的倒数是 3,故选:B【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键2 (3 分)在学习图形变化的简单应用这一节时,老师要求同学们利用图形变化设计图案下列设计的图案中,是中心对称图形但不是轴对称图形的是( )

    14、A B C D【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,也是中心对称图形,故此选项错误故选:C【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转 180 度后与原图重合3 (3 分)2018 年政府工作报告指出,过去五年来,我国经济实力跃上新台阶国内生产总值从 54 万亿元增加到 82.7 万亿元,稳居世界第二,82.

    15、7 万亿用科学记数法表示为( )A0.827 1014 B82.710 12 C8.27 1013 D8.2710 14【分析】科学记数法的表示形式为 a10n 的形式,其中 1|a |10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同当原数绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数【解答】解:82.7 万亿=8.27 1013,故选:C【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值4 (3 分)由 5 个棱

    16、长为 1 的小正方体组成的几何体如图放置,一面着地,两面靠墙如果要将露出来的部分涂色,则涂色部分的面积为( )A9 B11 C14 D18【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得【解答】解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为 4+4+3=11,故选:B【点评】本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果5 (3 分)甲、乙、丙、丁 4 支仪仗队队员身高的平均数及方差如下表所示:甲 乙 丙 丁平均数(cm)177 178 178 179方差 0.9 1.6 1.1 0.6哪支仪仗队的身高更

    17、为整齐?( )A甲 B乙 C丙 D丁【分析】方差小的比较整齐,据此可得【解答】解:甲、乙、丙、丁 4 支仪仗队队员身高的方差中丁的方差最小,丁仪仗队的身高更为整齐,故选:D【点评】本题考查了方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定6 (3 分)下列说法正确的是( )A367 人中至少有 2 人生日相同B任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C天气预报说明天的降水概率为 90%,则明天一定会下雨D某种彩票中奖的概率是 1%,则买 10

    18、0 张彩票一定有 1 张中奖【分析】利用概率的意义和必然事件的概念的概念进行分析【解答】解:A、367 人中至少有 2 人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是 ,错误;C、天气预报说明天的降水概率为 90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是 1%,则买 100 张彩票不一定有 1 张中奖,错误;故选:A【点评】此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念7 (3 分)利用计算器求值时,小明将按键顺序为显示结果记为 a,的显示结果记为 b则 a, b 的大小关系为( )Aa b Bab Ca=b D不能比较【分析】由计算器

    19、的使用得出 a、b 的值即可【解答】解:由计算器知 a=(sin30) 4=16、b= =12,a b ,故选:B【点评】本题主要考查计算器基础知识,解题的关键是掌握计算器的使用8 (3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )A28 B29 C30 D31【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为 120,即可求得相应的 n 的值,从而可以解答本题【解答】解:由图可得,第 n 个图形有玫瑰花:4n,令 4n=120,得 n=30,故选:C【点评】本题考查

    20、图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律9 (3 分)对角线长分别为 6 和 8 的菱形 ABCD 如图所示,点 O 为对角线的交点,过点 O 折叠菱形,使 B,B两点重合,MN 是折痕若 BM=1,则 CN 的长为( )A7 B6 C5 D4【分析】连接 AC、BD,如图,利用菱形的性质得OC= AC=3,OD= BD=4,COD=90 ,再利用勾股定理计算出 CD=5,接着证明OBM ODN 得到 DN=BM,然后根据折叠的性质得 BM=BM=1,从而有DN=1,于是计算 CDDN 即可【解答】解:连接 AC、BD,如图,点 O 为菱形 ABCD 的对角线的交点,O

    21、C= AC=3,OD= BD=4,COD=90 ,在 RtCOD 中,CD= =5,ABCD,MBO=NDO,在OBM 和 ODN 中,OBM ODN,DN=BM,过点 O 折叠菱形,使 B,B两点重合,MN 是折痕,BM=BM=1 ,DN=1,CN=CDDN=5 1=4故选:D【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了菱形的性质10 (3 分)如图,四边形 ABCD 内接于O ,点 I 是ABC 的内心,AIC=124 ,点 E 在 AD 的延长线上,则CDE 的度数为( )A56 B62 C68 D78

    22、【分析】由点 I 是ABC 的内心知BAC=2 IAC 、ACB=2ICA,从而求得B=180 (BAC +ACB)=180 2(180AIC) ,再利用圆内接四边形的外角等于内对角可得答案【解答】解:点 I 是 ABC 的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180 (BAC +ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形 ABCD 内接于O,CDE=B=68,故选:C【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质11 (3 分)如图,二次函数 y=ax2+bx+c 的图象与 x 轴交

    23、于点 A(1,0) ,B(3 ,0) 下列结论: 2ab=0;(a+c) 2b 2;当 1x 3 时,y 0;当 a=1 时,将抛物线先向上平移 2 个单位,再向右平移 1 个单位,得到抛物线y=(x 2) 22其中正确的是( )A B C D【分析】根据二次函数图象与系数之间的关系即可求出答案【解答】解:图象与 x 轴交于点 A( 1,0) ,B (3,0) ,二次函数的图象的对称轴为 x= =1 =12a+b=0,故错误;令 x=1,y=ab+c=0,a +c=b,(a +c) 2=b2,故错误;由图可知:当1x3 时,y0 ,故正确;当 a=1 时,y=(x+1) (x 3)= (x1)

    24、 24将抛物线先向上平移 2 个单位,再向右平移 1 个单位,得到抛物线 y=(x 11) 24+2=(x 2) 22,故正确;故选:D【点评】本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型12 (3 分)如图,矩形 ABCD 中,AB=8cm,BC=6cm,点 P 从点 A 出发,以lcm/s 的速度沿 ADC 方向匀速运动,同时点 Q 从点 A 出发,以 2cm/s 的速度沿 ABC 方向匀速运动,当一个点到达点 C 时,另一个点也随之停止设运动时间为 t(s) ,APQ 的面积为 S(cm 2) ,下列能大致反映 S 与 t 之间函数关系的图

    25、象是( )A B CD【分析】先根据动点 P 和 Q 的运动时间和速度表示:AP=t ,AQ=2t,当 0t4 时,Q 在边 AB 上,P 在边 AD 上,如图 1,计算 S 与 t 的关系式,发现是开口向上的抛物线,可知:选项 C、D 不正确;当 4t6 时,Q 在边 BC 上,P 在边 AD 上,如图 2,计算 S 与 t 的关系式,发现是一次函数,是一条直线,可知:选项 B 不正确,从而得结论【解答】解:由题意得:AP=t,AQ=2t ,当 0t4 时,Q 在边 AB 上,P 在边 AD 上,如图 1,SAPQ = APAQ= =t2,故选项 C、D 不正确;当 4t6 时,Q 在边 B

    26、C 上,P 在边 AD 上,如图 2,SAPQ = APAB= =4t,故选项 B 不正确;故选:A【点评】本题考查了动点问题的函数图象,根据动点 P 和 Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出 S 与 t 的函数关系式二、填空题(本大题共 6 个小题,每小题 3 分,满分 18 分)13 (3 分) ( 3.14) 0+tan60= 1+ 【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案【解答】解:原式=1+ 故答案为:1+ 【点评】此题主要考查了实数运算,正确化简各数是解题关键14 (3 分) 与最简二次根式 5 是同类二次根式,则

    27、a= 2 【分析】先将 化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于 a 的方程,解出即可【解答】解: 与最简二次根式 是同类二次根式,且 ,a +1=3,解得:a=2故答案为 2【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式15 (3 分)如图,反比例函数 y= 的图象经过ABCD 对角线的交点 P,已知点A,C,D 在坐标轴上,BDDC ,ABCD 的面积为 6,则 k= 3 【分析】由平行四边形面积转化为矩形 BDOA 面积,在得到矩形 PDOE 面积,应用反比例函数比例系数 k 的意义即可【解答】解:过点 P

    28、做 PEy 轴于点 E四边形 ABCD 为平行四边形AB=CD又BDx 轴ABDO 为矩形AB=DOS 矩形 ABDO=SABCD=6P 为对角线交点,PE y 轴四边形 PDOE 为矩形面积为 3即 DOEO=3设 P 点坐标为( x,y)k=xy=3故答案为:3【点评】本题考查了反比例函数比例系数 k 的几何意义以及平行四边形的性质16 (3 分)如图,方格纸上每个小正方形的边长均为 1 个单位长度,点O,A,B,C 在格点(两条网格线的交点叫格点)上,以点 O 为原点建立直角坐标系,则过 A,B,C 三点的圆的圆心坐标为 ( 1,2) 【分析】连接 CB,作 CB 的垂直平分线,根据勾股

    29、定理和半径相等得出点 O 的坐标即可【解答】解:连接 CB,作 CB 的垂直平分线,如图所示:在 CB 的垂直平分线上找到一点 D,CDDB=DA= ,所以 D 是过 A,B,C 三点的圆的圆心,即 D 的坐标为( 1,2) ,故答案为:(1,2) ,【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置17 (3 分)已知关于 x 的一元二次方程 x24x+m1=0 的实数根 x1,x 2,满足3x1x2x1x22,则 m 的取值范围是 3m5 【分析】根据根的判别式0、根与系数的关系列出关于 m 的不等式组,通过解该不等式组,求得 m 的取值范围【解答】解:依题意得: ,解得 3m5故答

    30、案是:3m5【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于 m 的不等式,注意:一元二次方程 ax2+bx+c=0(a、b、c 为常数,a 0)当 b24ac0 时,一元二次方程有两个不相等的实数根,当 b24ac=0 时,一元二次方程有两个相等的实数根,当 b24ac0 时,一元二次方程没有实数根18 (3 分)如图,点 O 为正六边形 ABCDEF 的中心,点 M 为 AF 中点,以点 O为圆心,以 OM 的长为半径画弧得到扇形 MON,点 N 在 BC 上;以点 E 为圆心,以 DE 的长为半径画弧得到扇形 DEF,把扇形 MON 的两条半径 OM,ON 重合,

    31、围成圆锥,将此圆锥的底面半径记为 r1;将扇形 DEF 以同样方法围成的圆锥的底面半径记为 r2,则 r1:r 2= :2 【分析】根据题意正六边形中心角为 120且其内角为 120求出两个扇形圆心角,表示出扇形半径即可【解答】解:连 OA由已知,M 为 AF 中点,则 OMAF六边形 ABCDEF 为正六边形AOM=30设 AM=aAB=AO=2a ,OM=正六边形中心角为 60MON=120扇形 MON 的弧长为: a则 r1= a同理:扇形 DEF 的弧长为:则 r2=r1:r 2=故答案为: :2【点评】本题考查了正六边形的性质和扇形面积及圆锥计算解答时注意表示出两个扇形的半径三、解答

    32、题(本大题共 7 个小题,满分 66 分)19 (6 分)先化简,再求值:(1+ ) ,其中 x 满足 x22x5=0【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值【解答】解:原式= = =x(x2)=x 22x,由 x22x5=0,得到 x22x=5,则原式=5【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键20 (8 分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式现将调查结果进行统计并绘制成如下两

    33、幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了 200 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 81 ;(2)将条形统计图补充完整观察此图,支付方式的“众数”是“ 微信 ”;(3)在一次购物中,小明和小亮都想从“微信”、 “支付宝 ”、 “银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率【分析】 (1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用 360乘以“ 支付宝 ”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的

    34、定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案【解答】解:(1)本次活动调查的总人数为(45+50+15)(115% 30%)=200 人,则表示“支付宝 ”支付的扇形圆心角的度数为 360 =81,故答案为:200、81;(2)微信人数为 20030%=60 人,银行卡人数为 20015%=30 人,补全图形如下:由条形图知,支付方式的“众数” 是“微信”,故答案为:微信;(3)将微信记为 A、支付宝记为 B、银行卡记为 C,画树状图如下:画树状图得:共有 9 种等可能的结果,其中两人恰好选择同一种支

    35、付方式的有 3 种,两人恰好选择同一种支付方式的概率为 = 【点评】此题考查了树状图法与列表法求概率用到的知识点为:概率=所求情况数与总情况数之比21 (8 分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路 l,其间设有区间测速,所有车辆限速 40 千米/小时数学实践活动小组设计了如下活动:在 l 上确定 A, B 两点,并在 AB 路段进行区间测速在 l 外取一点P,作 PCl ,垂足为点 C测得 PC=30 米,APC=71,BPC=35上午 9 时测得一汽车从点 A 到点 B 用时 6 秒,请你用所学的数

    36、学知识说明该车是否超速 (参考数据:sin350.57 ,cos35 0.82 ,tan350.70,sin710.95,cos710.33,tan712.90)【分析】先求得 AC=PCtanAPC=87 、BC=PCtanBPC=21,据此得出AB=ACBC=8721=66,从而求得该车通过 AB 段的车速,比较大小即可得【解答】解:在 RtAPC 中,AC=PCtanAPC=30tan71302.90=87,在 RtBPC 中,BC=PCtanBPC=30tan35 300.70=21,则 AB=ACBC=8721=66,该汽车的实际速度为 =11m/s,又40km/h 11.1m/s,

    37、该车没有超速【点评】此题考查了解直角三角形的应用,涉及的知识有:锐角三角函数定义,熟练掌握三角函数的定义是解本题的关键22 (9 分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“ 共享单车”这批单车分为 A,B 两种不同款型,其中 A 型车单价400 元, B 型车单价 320 元(1)今年年初, “共享单车”试点投放在某市中心城区正式启动投放 A,B 两种款型的单车共 100 辆,总价值 36800 元试问本次试点投放的 A 型车与 B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开按照试点投放中 A,B 两车型的

    38、数量比进行投放,且投资总价值不低于 184 万元请问城区 10 万人口平均每 100 人至少享有 A 型车与 B 型车各多少辆?【分析】 (1)设本次试点投放的 A 型车 x 辆、B 型车 y 辆,根据“两种款型的单车共 100 辆,总价值 36800 元”列方程组求解可得;(2)由(1)知 A、B 型车辆的数量比为 3:2,据此设整个城区全面铺开时投放的 A 型车 3a 辆、B 型车 2a 辆,根据“投资总价值不低于 184 万元”列出关于a 的不等式,解之求得 a 的范围,进一步求解可得【解答】解:(1)设本次试点投放的 A 型车 x 辆、B 型车 y 辆,根据题意,得: ,解得: ,答:

    39、本次试点投放的 A 型车 60 辆、B 型车 40 辆;(2)由(1)知 A、B 型车辆的数量比为 3:2,设整个城区全面铺开时投放的 A 型车 3a 辆、B 型车 2a 辆,根据题意,得:3a400 +2a3201840000,解得:a1000 ,即整个城区全面铺开时投放的 A 型车至少 3000 辆、B 型车至少 2000 辆,则城区 10 万人口平均每 100 人至少享有 A 型车 3000 =3 辆、至少享有B 型车 2000 =2 辆【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程组23 (10 分)如图,已知 D,E 分别为ABC

    40、的边 AB,BC 上两点,点 A,C,E在D 上,点 B,D 在E 上F 为 上一点,连接 FE 并延长交 AC 的延长线于点 N,交 AB 于点 M(1)若EBD 为 ,请将 CAD 用含 的代数式表示;(2)若 EM=MB,请说明当CAD 为多少度时,直线 EF 为D 的切线;(3)在(2)的条件下,若 AD= ,求 的值【分析】 (1)根据同圆的半径相等和等边对等角得:EDB= EBD= ,CAD=ACD,DCE= DEC=2,再根据三角形内角和定理可得结论;(2)设MBE=x,同理得: EMB=MBE=x,根据切线的性质知:DEF=90,所以CED+MEB=90 ,同理根据三角形内角和

    41、定理可得CAD=45;(3)由(2)得:CAD=45 ;根据(1)的结论计算 MBE=30,证明CDE是等边三角形,得 CD=CE=DE=EF=AD= ,求 EM=1,MF=EFEM= 1,根据三角形内角和及等腰三角形的判定得:EN=CE= ,代入化简可得结论【解答】解:(1)连接 CD、DE ,E 中,ED=EB,EDB= EBD= ,CED=EDB+EBD=2,D 中,DC=DE=AD ,CAD=ACD,DCE=DEC=2,ACB 中,CAD+ACD+DCE+EBD=180 ,CAD= = ;(2)设MBE=x,EM=MB,EMB=MBE=x,当 EF 为D 的切线时,DEF=90,CED

    42、+MEB=90 ,CED=DCE=90x ,ACB 中,同理得,CAD +ACD+DCE+EBD=180,2CAD=18090=90 ,CAD=45;(3)由(2)得:CAD=45 ;由(1)得:CAD= ;MBE=30 ,CED=2 MBE=60,CD=DE,CDE 是等边三角形,CD=CE=DE=EF=AD= ,RtDEM 中,EDM=30,DE= ,EM=1,MF=EFEM= 1,ACB 中,NCB=45+30=75,CNE 中,CEN= BEF=30,CNE=75,CNE=NCB=75,EN=CE= , = = =2+ 【点评】本题考查三角形内角和定理、三角形的外角的性质、等腰三角形的

    43、性质和判定等知识,解题的关键是学会利用三角形角之间的关系确定边的关系,学会构建方程解决问题,属于中考常考题型24 (11 分) 【问题解决】一节数学课上,老师提出了这样一个问题:如图 1,点 P 是正方形 ABCD 内一点,PA=1,PB=2,PC=3你能求出APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将BPC 绕点 B 逆时针旋转 90,得到 BPA,连接 PP,求出APB的度数;思路二:将APB 绕点 B 顺时针旋转 90,得到CPB,连接 PP,求出APB的度数请参考小明的思路,任选一种写出完整的解答过程【类比探究】如图 2,若点 P 是正方形 ABCD 外一点,

    44、PA=3 ,PB=1 ,PC= ,求APB 的度数【分析】 (1)思路一、先利用旋转求出PBP=90,BP=BP=2,AP=CP=3,利用勾股定理求出 PP,进而判断出APP是直角三角形,得出APP=90 ,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论【解答】解:(1)思路一、如图 1,将BPC 绕点 B 逆时针旋转 90,得到BPA ,连接 PP,ABPCBP,PBP=90,BP=BP=2,AP=CP=3,在 RtPBP中,BP=BP=2,BPP=45,根据勾股定理得,PP= BP=2 ,AP=1,AP 2+PP2=1+8=9,AP 2=32=9

    45、,AP 2+PP2=AP2,APP 是直角三角形,且APP=90 ,APB=APP+BPP=90 +45=135;思路二、同思路一的方法;(2)如图 2,将BPC 绕点 B 逆时针旋转 90,得到BPA ,连接 PP,ABPCBP,PBP=90,BP=BP=1,AP=CP= ,在 RtPBP中,BP=BP=1,BPP=45,根据勾股定理得,PP= BP= ,AP=3,AP 2+PP2=9+2=11,AP 2=( ) 2=11,AP 2+PP2=AP2,APP 是直角三角形,且APP=90 ,APB=APPBPP=9045=45【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键25 (14 分)如图 1,抛物线 y=ax2+2x+c 与 x 轴交于 A( 4,0) ,B(1,0)两


    注意事项

    本文(2018年山东省烟台市中考数学试卷含答案解析)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开