欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019重庆中考数学专题复习:新定义阅读理解题(10道)含答案

    • 资源ID:64159       资源大小:348.50KB        全文页数:15页
    • 资源格式: DOC        下载积分:5积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付说明:
    本站最低充值10积分,下载本资源后余额将会存入您的账户,您可在我的个人中心查看。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019重庆中考数学专题复习:新定义阅读理解题(10道)含答案

    1、新定义阅读理解题1.阅读下列材料,解答下列问题:材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是 11 的倍数,我们称满足此特征的数叫“网红数”.如:65362 ,362-65=297=1127 ,称 65362 是“ 网红数”.材料二:对任意的自然数 p 均可分解为p=100x+10y+z(x0,0y9,0z9 且想,x,y ,z 均为整数),如:5278=52100+107+8,规定:G(p)= . x12)(1)求证:任意两个“网红数” 之和一定能被 11 整除;(2)已知:s=300+10b+a,t=1000 b+100a+1142(1a7,0

    2、b5,且a、b 均为整数),当 s+t 为“网红数”时,求 G(t )的最大值.(1)证明:设两个“网红数 ”为 , (n ,b 分别为 , 末三位表示mamna的数,m,a 分别为 , 末三位之前的数字表示的数),nab则 n-m=11k1,b- a=11k2, + =1001m+1001a+11(k 1+k2)=11(91m +91a+k1+k2).a又k 1,k 2,m , n 均为整数,91m+91a+k1+k2 为整数, 任意两个“网红数” 之和一定能被 11 整除.(2)解:s=3100+10b+ a,t=1000(b+1)+100(a+1)+410+2 ,S+t=1000(b+1

    3、)+100(a+4)+10 (b+4)+a+2,当 1a5 时,s +t= ,) () () ( 241则 -(b+1)能被 11 整除,) () ( 2a4101a+9b+441=119a+2a+11b-2b+4011+1 能被 11 整除,2a-2b+1 能被 11 整除 .1a5,0b5,-72a-2b+1 11,2a-2b+1=0 或 11,a=5, b=0,t=1642 , G(1642)=17 ,14当 6a7 时,s +t= ,) () () ( 2ab6a2b则 -(b+2)能被 11 整除,) () ( a4b101a+9b-560=119a+2a+11b-2b-5111+1

    4、 能被 11 整除,2a-2b+1 能被 11 整除 .6a7,0b5,32a-2b+115,2a-2b+1=11, , ,1627t=2742 或 3842,G( 2742)=28 ,G(3842)=39 ,251361综上,G(t)的最大值为 39 .362.若将自然数中能被 3 整除的数,在数轴上的对应点称为“3 倍点” ,取任意的一个“3 倍点 ”P,到点 P 距离为 1 的点所对应的数分别记为 a,b.定义:若数 Ka 2b 2ab,则称数 K 为“尼尔数”例如:若 P 所表示的数为3,则 a2,b4,那么 K2 24 22412;若 P 所表示的数为 12,则a11,b13,那么

    5、K13 211 21311147,所以 12,147 是“尼尔数”(1)请直接判断 6 和 39 是不是“ 尼尔数”,并且证明所有“尼尔数”一定被 9除余 3;(2)已知两个“ 尼尔数”的差是 189,求这两个“尼尔数”解:(1)6 不是尼尔数,39 是尼尔数证明:设 P 表示的数为 3m,则 a(3m1),b(3m 1),K (3m1) 2(3 m1) 2(3m1)(3m1)9m 23,m 为整数,m 2 为整数,9m2 3 被 9 除余 3;(2)设这两个尼尔数分别是 K1,K 2,将两个“尼尔数”所对应的“3 倍点数”P1,P 2 分别记为 3m1, 3m2.K1K 29 m129m 2

    6、2189,m12 m22 21,m1, m2 都是整数,m1 m2 7,m 1m 23, ,52 .39k8213.若在一个两位正整数 N 的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为 N 的“诚勤数”,如 34 的“ 诚勤数”为324 ;若将一个两位正整数 M 加 2 后得到一个新数,我们称这个新数为M 的 “立达数”,如 34 的“立达数”为 36.(1)求证:对任意一个两位正整数 A ,其“ 诚勤数”与“ 立达数”之差能被 6 整除;(2)若一个两位正整数 B 的“ 立达数”的各位数字之和是 B 的各位数字之和的一半,求 B 的值.解:(1)设 A 的十

    7、位数字为 a,个位数字为 b,则 A 10a+b,它的“ 诚勤数”为 100a+20+b,它的“ 立达数”为 10a+b+2,100a+20+b-(10a+ b+2)90a+186(15 a+3),a 为整数,15a+3 是整数,则“诚勤数”与“立达数”之差能被 6 整除;(2)设 B10m+n,1m9,0n9(B 加上 2 后各数字之和变小,说明个位发生了进位),B+210m+ n+2,则 B 的 “立达数” 为 10(m+1)+ (n+2-10),m+1+n+210= (m +n),21整理,得 m+n14,1m9, 0n9, 、 、 、 、 ,6n859n7m经检验:77、86 和 95

    8、 不符合题意,舍去,所求两位数为 68 或 594一个正偶数 k 去掉个位数字得到一个新数,如果原数的个位数字的 2倍与新数之和与 19 的商是一个整数,则称正偶数 k 为“ 魅力数”,把这个商叫做 k 的魅力系数,记这个商为 F(k )如: 722 去掉个位数字是 72,2的 2 倍与 72 的和是 76,7619=4,4 是整数,所以 722 是“魅力数”,722的魅力系数是 4,记 (72)(1)计算: ;(30)5F(2)若 、 都是“ 魅力数”,其中 ,mn301ma(0a9,0b9,0c9,a、b、c 是整数) ,规定:401c当 时,求 的值(,)G()24Fn(,)Gn解:(1

    9、)30+24=38,3819=2,F(304)=2.205+22=209,20919=11, F(2025)=11.F(304) +F(2052)=13 ;(2)m =3030+101a=3000+100a+30+a,F(m)= = =15+ .192301901928m 是 “魅力数” , 是整数.19a280a9,且 a 是偶数, a=0,2,4,6,8.当 a=0 时, = 不符合题意.198当 a=2 时, = 不符合题意.24当 a=4 时, = 不符合题意.1a6当 a=6 时, = 不符合题意.980当 a=8 时, = =6 符合题意.a24a=8,此时 m=3838,F(m)

    10、=F(3838)=6+15=21.又F(m)+ F(n)=24,F(n)=3.n=400+10b+c,F(n)= =3,19240b+2c=17,n 是“ 魅力数” , c 是偶数,又0c 9,c=0 ,2,4,6,8.当 c=0 时,b=17 不符合题意.当 c=2 时,b=13 不符合题意.当 c=4 时,b=9 符合题意.此时,G(m,n)= = = .bca948当 c=6 时,b=5 符合题意.此时,G(m,n)= = = .562当 c=8 时,b=1 符合题意.此时,G(m,n)= = =0.ca1 0,9452G( m,n)的最大值是 .945.已知一个正整数,把其个位数字去掉

    11、,再将余下的数加上个位数字的 4倍,如果和是 13 的倍数,则称原数为“超越数” 如果数字和太大不能直接观察出来,就重复上述过程如:1131:113+41117,11713 9,所以 1131 是“超越数” ;又如:3292:329+42337,33+4761,因为 61 不能被 13 整除,所以3292 不是“ 超越数”(1)请判断 42356 是否为“超越数” (填“是”或“ 否”),若+4c13k (k 为整数),化简 除以 13 的商(用含字母 k 的代数式ababc表示)(2)一个四位正整数 N ,规定 F(N)|a+d 2bc|,例如:abcdF(4953)|4+3 259|32,

    12、若该四位正整数既能被 13 整除,个位数字是 5,且 ac ,其中 1a4求出所有满足条件的四位正整数 N 中F(N)的最小值解:(1)否,4235+464259,425+49461,46+4150,因为 50 不能被 13 整除,所以 42356 不是超越数. +4c13 k,ab10a+b+4c13k ,10a+b13 k4c, 100a+10 b+c10(10a+b)+c130k 40c+c130k 39c13(10k3c),c 10k3c;1ab(2)由题意得 d5,ac,N1000a+100b+10c+5,N 能被 13 整除,设 100a+10b+c+45 13k,101a+10b

    13、+2013k,且 a 为正整数,b,k 为非负整数,1a4,a2,b9,k24 或 a3,b8,k31,或 a4,b7,k38,F(N)|2+2518|9,或 F(N)|3+25 24|4,或F(N)|4+2528|1,F(N)最小值为 16.一个两位正整数 n,如果 满足各数位上的数字互不相同且均不为 0,那么称 n 为“ 启航数”,将 的两个数位上的数字对调得到一个新数 n.把 放在 的后面组成第一个四位数,把 n放在 的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以 11 所得的商记为 ()F,例如:23n时, 2, 23()81F.(1)计算 (4)_; 若 m为“启

    14、航数” , ()Fm是一个完全平方数,求()Fm的值;(2) st、 为“启航数” ,其中10,abxy(1ba9,1x、y5,且 yxba,为整数)规定: ()stKt,若 ()Fs能被 7整除,且 ()8162Fst,求 (,)Kst的最大值.解:(1)F(42)=162,设 m= (1pq9,且 p、q 为整数),则 ,()81() 完全平方数, 为完全平方数,Fpq1pq9,且 p、q 为整数,0p-q8, ,14或F(m)=81 或 324;(2)由题意知:s= ,t= (1ba9,1x、y 5,且 )a abxy、 、 、 为 整 数, , ,()81)Fsb(8)Ftxy 能被

    15、整除, 为整数,()Fs781()7ab又1ba9,0a-b8, , ,79,28,1ab或s=92 或 81.又 ,()816Fty81(a-b)+81 (x-y)-81y =162,2y=x+5,1x,y5 且 ,xy ,,3,4或t=13 或 34, ,K(92,34)= , ,79(2,1)3345868(1,)3K47(1,)3KKmax= .7.若一个三位数,其个位数加上十位数等于百位数,可表示为t100(x +y)+10y+x(x +y9),则称实数 t 为“加成数”,将 t 的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数 h规定 qth,f(m) ,例如:321

    16、 是一个“ 加成数”,将其百位作为个位,9q个位作为十位,十位作为百位,得到的数h213, q321 213108,f(m) 129108(1)当 f(m)最小时,求此时对应的“加成数” 的值;(2)若 f(m)是 24 的倍数,则称 f(m)是“节气数” ,猜想这样的“节气数”有多少个,并求出所有的“ 节气数”解:(1)f(m) ,9q当 f(m)最小时,q 最小,t100(x+ y)+10 y+x=101x+110y,h100y+10x +x+y101y+11x,qt h101x+ 110y(101y+11x)9y+90x,且 1y9,0x9,x 、y为正整数,当 x0,y1 时,q 9,

    17、此时对应的“加成数”是 110;(2)f(m)是 24 的倍数,设 f(m)24n(n 为正整数),则 24n ,q216n,9由(1)知:q9y+90x9(y +10x),216n9(y+10 x),24ny+10x,(x +y 10)当 n1 时,即 y+10x24,解得:x2 ,y 4,则这样的“节气数”是24;当 n2 时,即 y+10x48,解得:x4 ,y 8,x+y1210,不符合题意;当 n3 时,即 y+10x72,解得:x7 ,y 2,则这样的“节气数”是72;当 n4 时,即 y+10x96,解得:x 9,y 6,x+y1510,不符合题意;当 n5 时,即 y+10x1

    18、20,没有符合条件的整数解,综上,这样的“节气数 ”有 2 个,分别为 24, 728.在任意 n(n1 且为整数)位正整数 K 的首位后添加 6 得到的新数叫做K 的 “顺数”,在 K 的末位前添加 6 得到的新数叫做 K 的“ 逆数”若 K 的“顺数”与“ 逆数” 之差能被 17 整除,称 K 是“最佳拍档数” 比如 1324 的“顺数”为 16324,1324 的“逆数”为 13264, 1324 的“ 顺数”与“逆数” 之差为 16324132643060 ,306017180,所以 1324 是“最佳拍档数” (1)请根据以上方法判断 31568 (填“是” 或“不是”)“ 最佳拍档

    19、数”;若一个首位是 5 的四位“最佳拍档数” N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的 N 的值(2)证明:任意三位或三位以上的正整数 K 的“顺数”与“ 逆数”之差一定能被 30 整除(1)解:是;【解法提示】361568 31566845900,且 45900172700,根据最佳拍档数的定义可知,31568 是“最佳拍档数”;故答案为:是设“最佳拍档数 ”N 的十位数字为 x,百位数字为 y,则个位数字为8x,y x ,N 5000+100y+10x+8x100y+9x+5008,N 是四位“ 最佳拍档数”,50000+6000+100y+10x+8x

    20、50000+1000y+100x+60+8x,6000+100 y+9x+81000y100x68+x,594090x900y,90(66x10y),66x10y 能被 17 整除,x 2,y3 时,66x10y34,能被 17 整除,此时 N 为 5326;x 3,y8 时,66x10y17,能被 17 整除,此时 N 为 5835;x 5,y1 时,66x10y51,能被 17 整除,但 xy ,不符合题意;x 6,y6 时,66x10y0,能被 17 整除,此时 N 为 5662;x 8,y3 时,66x10y28,不能被 17 整除,但 xy ,不符合题意;当 x9,y4 时,66x1

    21、0y17,能被 17 整除,但 xy ,不符合题意;综上,所有符合条件的 N 的值为 5326,5835,5662;(2)证明:设三位正整数 K 的个位数字为 x,十位数字为 y,百位数字为z,它的“顺数”:1000z+600+10 y+x,它的“逆数”:1000z+100y +60+x,(1000z+600+10y+ x) (1000z+100y+60+x)540 90y90(6 y),任意三位正整数 K 的“ 顺数”与“逆数” 之差一定能被 30 整除,设四位正整数 K 的个位数字为 x,十位数字为 y,百位数字为 z,千位数字为 a,(10000a+6000+100 z+10y+x) (

    22、10000a+1000z+100y+60+ x)5940900z 90y90(6610z y),任意四位正整数 K 的“ 顺数”与“逆数” 之差一定能被 30 整除,同理得:任意三位或三位以上的正整数 K 的“顺数”与“ 逆数”之差一定能被30 整除9.若实数 a 可以表示成两个连续自然数的倒数差,即 a - ,那么我n11n 1们称 a 为第 n 个“1 阶倒差数 ”,例如 1- , 是第 1 个“1 阶倒差数”,212 - , 是第 2 个“1 阶倒差数”同理,若 b - ,那么,我们612316 n称 b 为第 n 个“2 阶倒差数 ”(1)判断 是否为 “1 阶倒差数”;直接写出第 5

    23、 个“2 阶倒差数”;132(2)若 c,d 均是由两个连续奇数组成的“2 阶倒差数”,且 - 22,求d1cc,d 的值解:(1) 不是“1 阶倒差数”, ;132 235【解法提示】3213221648,不是两个连续自然数的积, 不是“1 阶倒差数”321第 5 个“2 阶倒差数 ”为 - .51732(2)设 m 是由两个连续奇数 2x-1,2x+1 组成的 “2 阶倒差数”,则 m= -1x2= = .1x2) ( )( 1x24c,d 是两个连续奇数组成的“2 阶倒差数”,可设 c ,d ,1y421z42 22,d1 22,4z2 12 4y2 12即 z2 y211,(z y)(

    24、zy)110 ,zy.11111 , ,解得 ,1yz6z5yc= = ,d= = .1542299 1642214310.任意一个正整数 n,都可以表示为:nabc (abc,a,b,c 均为正整数),在 n 的所有表示结果中,如果|2b (a+ c)|最小,我们就称abc 是 n 的“ 阶梯三分法”,并规定:F(n) ,例如:b6116123,因为|21(1+6 )|5, |22(1+3)|0,50,所以 123 是 6 的阶梯三分法,即 F(6) 231(1)如果一个正整数 p 是另一个正整数 q 的立方,那么称正整数 p 是立方数,求证:对于任意一个立方数 m,总有 F(m )2;(2

    25、)t 是一个两位正整数,t10x+y(1x9,0y 9,且xy , x+y10,x 和 y 均为整数),t 的 23 倍加上各个数位上的数字之和,结果能被 13 整除,我们就称这个数 t 为 “满意数”,求所有“ 满意数”中 F(t )的最小值解:(1)m 为立方数,设 mqqq,|2q(q+q)|0,qqq 是 m 的阶梯三分法,F(m)= =2;(2)由已知,23(10x+y )+ x+y能被 13 整除,整理得:231x+24y 能被 13 整除,231x+24y13(18x +2y)(3x+2y),3x+2y 能被 13 整除,1x9,0y 9,33x +2y45,x,y 均为整数,3x+2y 的值可能为 13、26 或 39,当 3x+2y13 时,xy,x+y10,x3,y2,t32,32 的阶梯三分法为 244,F(32) ;234同理,当 3x+2y26 时,可得 x8, y1 或 x6,y4,t81 或 64,F(81) 4,F (64)2;同理,当 3x+2y39 时,可得 x9, y6(不合题意舍去),综合,F (t )最小值为 .23


    注意事项

    本文(2019重庆中考数学专题复习:新定义阅读理解题(10道)含答案)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开