1、德州市二一九年初中学业水平考试 数 学 试 题 一、选择题:本大题共 12 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来 .每小题选对得 4 分,选错、不选或选出的答案超出一个均记零分 . 1. 21 的倒数是 A. 2 B. 21 C.2 D.1 2.下列图形中,是中心对称图形但不是轴对称图形的是 A. B. C. D. 3.据托架统计局统计,我国 2018 年国民生产总值( GDP)为 900300 亿元 .用科学记数法表示900300 亿是 A. 1210003.9 B. 121003.90 C. 14109003.0 D. 1310003.9 4.下列运算正确
2、的是 A. 22 42 aa B. 222 baba C. 725 aa D. 422 2 aaa 5.若函数 xky 与 cbxaxy 2 的图象如下图所示,则函数 bkxy 的大致图象为 6.不等式组 xx xx2371211325 的所有非负整数解的和是 A.10 B.7 C.6 D.0 7.下列命题是真命题的是 A.两边及其中一边的对角分别相等的两个三角形全等 B.平分弦的直径垂直于弦 C.一组对边平行且一组对角相等的四边形是平行四边形 D.两条直线别第三条直线所截,内错角相等 8.孙子算经中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸 ;屈绳 开始度之 ,不足一尺 ,
3、木长几何 ?”意思是 :用一根绳子去量一根木条,绳子剩余 4.5 尺,将绳子对折再量木条,木条剩余 1 尺,问木条长多少尺?现设绳长 x 尺,木长 y 尺,则可设二元一次方程组为 A. 1215.4xyxy B. 1215.4xyyx C. 1215.4yxyx D. 1215.4yxxy9.如图,点 O 为线段 BC 的中点,点 A, C, D 到点 O 的距离相等,若 ABC=40,则 ADC的度数 是 A.130 B.140 C.150 D.160 10.甲、乙是两个不透明的纸箱,甲中有三张标有数字 1,21,41 的卡片,乙中有三张标有数字1,2,3 的卡片,卡片除所标数字外无其他差别
4、 .现制定一个游戏规则:从甲中任取一张卡片,将其数字记为 a,从乙中任取一张卡片,将其数字记为 b,若 a, b 能使关于 x 的一元二次方程 012 bxax 有两个不相等的实数根,则甲获胜;否则乙获胜,则乙获胜的概率为 A.32 B. 95 C. 94 D. 3111.在下列函数图象上任取不同两点 111 ,yxP , 222 ,yxP ,一定能使 01212 xx yy 成立的是 A. 013 xxy B. 0122 xxxy C. 03 xxy D. 0142 xxxy 12.如图,正方形 ABCD,点 F 在边 AB 上,且 2:1: FBAF , DFCE ,垂足为 M,且交 AD
5、 于点 E, AC 与 DF 交于点 N,延长 CB 至 G,使 BCBG 21 ,连接 GM.有如下结论: DE=AF; ABAN 42 ; ADF= GMF; 8:1:C N F B四 边边ANF SS.上述结论中,所有正确结论的序号是 A. B. C. D. 二、填空题:本大题共 6 小题,共 24 分,只要求填写最后结果,每小题填对得4 分 . 13. xx 33 ,则 x 的取值范围是 _. 14.方程 113116 xxx的解为 _. 15.如图,一架长为 6 米的梯子 AB 斜靠在一竖直的墙 AO 上,这时测得 ABO=70,如果梯子的底端 B 外移到 D,则梯子顶端 A 下移到
6、 C,这时又测得 CDO=50,那么 AC 的长度约为 _米 .( sin70 0.94, sin50 0.77, cos70 0.34, cos50 0.64) 16.已知 x表示不超过 x 的最大整数 .例: 4.8=4, 0.8= 1.现定义: x=x x,例:1.5=1.5-1.5=0.5,则 3.9+ 1.8-1=_. 17.如图, CD 为 O 的直径,弦 AB CD,垂足为 E, , CE=1, AB=6,则弦 AF 的长度为 _. 18.如图,点 531 , AAA 在反比例函数 0 xxky 的图象上,点 642 , AAA 在反比例函数 0 xxky 的图象上, 43232
7、121 AAAAAAAOA 60 ,且 21OA ,则 nA ( n 为正整数)的纵坐标为 _.(用含 n 的式子表示) 三、解答题:本大题共 7 小题,共 78分 .解答要写出必要的文字说明、证明过程或演算步骤 . 19.(本题满分 8 分) 先化简,再求值: 22251222mnnmmnmn nmnm,其中 031 2 nm . 20.(本题满分 10 分) 中学生体质健康标准规定的等级标准为: 90 分及以上为优秀, 8089 分为良好, 6079分为及格, 59 分及以下为不及格 .某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取 10 名同学进行体质健康检测,并对成绩进
8、行分析 .成绩如下: 七年级 80 74 83 63 90 91 74 61 82 62 八年级 74 61 83 91 60 85 46 84 74 82 ( 1)根据上述数据,补充完成下列表格 . 整理数据: 频数 等级 年级 优秀 良好 及格 不及格 七年级 2 3 5 0 八年级 1 4 _ 1 分析数据: 年级 平均数 众数 中位数 七年级 76 74 77 八年级 _ 74 _ ( 2)该校目前七年级有 200 人,八年级有 300 人,试估计两个年级体质健康等级达到优秀的学生共有多少人? ( 3)结合上述数据信息,你认为哪个年级的学生的体质健康状况更好,并说明理由 . 21.(本
9、题满分 10) 习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人字样浩然之气”。某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆 .据统计,第一个月进馆 128 人次,进馆人次逐月增加,到第三个月末累计进馆 608 人次,若进馆人次的月平均增长率相同。 ( 1)求进馆人次的月平均增长率; ( 2)因条件限制,学校图书馆每月接纳能力补超过 500 人次,在进馆人次的月平均增长率的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由。 22.(本题满分 12 分) 如图, BPD=120,点 A、 C 分别在射线 PB、 PD 上, PAC=30, 32AC . (
10、 1)用尺规在图中作一段劣弧,使得它在 A、 C 两点分别与射线 PB 和 PD 相切,要求:写出作法,并保留作图痕迹; ( 2)根据( 1)的作法,结合已有条件,请写出已知和求证,并证明; ( 3)求所得的劣弧与线段 PA、 PC 围成的封闭图形的面积 . 23.(本题满分 12 分) 下表中给出 A, B, C 三种手机通话的收费方式。 收费方式 月通话费 /元 包时通话时间 /h 超时费 /(元 /min) A 30 25 0.1 B 50 50 0.1 C 100 不限时 ( 1)设月通话时间为 x 小时,则方案 A, B, C 的收费金额 321 , yyy 都是 x 的函数,请分别
11、求出这三个函数解析式; ( 2)填空: 若选择方式 A 最省钱,则月通话时间 x 的取值范围为 _; 若选择方式 B 最省钱,则月通话时间 x 的取值范围为 _; 若选择方式 C 最省钱,则月通话时间 x 的取值范围为 _; ( 3)小王、小张今年 5 月份通话费均为 80 元,但小王比小张通话时间长,求小王该月的通话时长; 24(本题满分 12 分 ) ( 1)如图 1,菱形 AEGH 的顶点 E、 H 在菱形 ABCD 的边上,且 BAD=60,请直接写出HD: GC: EB 的结果(不必写出计算过程); ( 2)将图 1 中的菱形 AEGH 绕点 A 旋转一定角度,如图 2,求 HD:
12、GC: EB; ( 3)把图 2 中的菱形都换成矩形,如图 3,且 AD: AB=AH: AE=1:2,此时 HD: GC: EB 的结果与( 2)小题的结果相比有什么变化吗?如果有变化,直接写出变化后的结果(不必写出计算过程);若无变化,请说明理由。 25(本题满分 14 分) 如图,抛物线 4252 mxmxy 与 x 轴交于 0,1xA , 0,2xB 两点,与 y 轴交于点 C,且 21112 xx. ( 1)求抛物线的解析式; ( 2)若 11 , yxP , 22,yxQ 是抛物线上的两点,当 21 axa , 292 x时,均有 21 yy ,求 a 的取值范围; ( 3)抛物线上一点 D( 1, 5),直线 BD 与 y 轴交于点 E,动点 M 在线段 BD 上,当 BDC= MCE 时,求点 M 的坐标。