欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年高考数学教师版(含解析)之选择题、填空题的解法

    • 资源ID:72535       资源大小:484.12KB        全文页数:18页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年高考数学教师版(含解析)之选择题、填空题的解法

    1、选择题、填空题的解法【2019 年高考考纲解读】高考选择题、填空题绝大部分属于低中档题目,一般按由易到难的顺序排列,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识解决数学问题的能力. (1)解题策略:选择题、填空题是属于“ 小灵通”题,其解题过程“不讲道理”,所以解题的基本策略是充分利用题干所提供的信息作出判断,先定性后定量,先特殊后一般,先间接后直接,另外对选择题可以先排除后求解. (2)解决方法:选择题、填空题属“ 小”题,解题的原则是“小”题巧解, “小”题不能大做.主要分直接法和间接法两大类.具体的方法有:直接法,等价转化法,特值、特例法,数形结合法 ,构

    2、造法,对选择题还有排除法(筛选法) 等. 来源:Zxxk.Com【高考题型示例】方法一、 直接法 直接法就是利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论.这种策略多用于一些定性的问题,是解题最常用的方法. 例 1、(1)已知点 A,B,C 在圆 x2+y2=1 上运动,且 ABBC.若点 P 的坐标为(2 ,0),则 的最大值为( ) A.6 B.7 C.8 D.9 (2)已知 M(x0,y 0)是双曲线 C: -y2=1 上的一点,F 1,F 2 是 C 的两个焦点,若 lg x0,命题 q:xR,e x1,则( ) A.命题 pq 是假命题

    3、 B.命题 pq 是真命题 C.命题 p( q)是真命题 D.命题 p( q)是假命题 方法四、排除法( 筛选法) 从已知条件出发,通过观察分析或推理运算各选项提供的信息,将错误的选项逐一排除,而获得正确的结论.排除法适应于定性型或不易直接求解的 选择题.当题目中的条件多于一个时,先根据某些条件在选项中 找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法. 例 4、过点( ,0) 引直线 l 与曲线 y= 相交于 A,B 两点,O 为坐标原点,当AOB的面积取最大值时,直线 l 的斜率等于

    4、( ) A. B.- C. D.-【变式探究】函数 y=xcos x+sin x 的图象大致为( ) 方法五、图解法( 数形结合法) 在处理数学问题时,将抽象的数学语言与直观的几何图形有机结合起来,通过对图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等 )与某些图形结合起来,利用图象的直观性解决问题,这种方法称为数形结合法. 例 5、函数 f(x)= +2cos x(-2x4)的所有零点之和等于( ) A.2 B.4 C.6 D.8 【变式探究】已知正三角形 AB C 的边长为 2 ,平面 ABC 内的动点 P,M 满足| |=1,则| |2 的最大值是( )

    5、A. B. C. D.方法六、直接法 直接法就是从题干给出的条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,直接得出结论. 例/6 、(2018 全国 ,文 16)已知圆锥的顶点为 S,母线 SA,SB 互相垂直,SA 与圆锥底面所成角为 30.若SAB 的面积为 8,则该圆锥的体积为 . 【变式探究】设向量 a=(1,0),b =(-1,m).若 a(m a-b),则 m= . 方法七、特例法 当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值进行处理,从而得出待求的

    6、结论.这样可大大地简化推理、论证的过程. 例 7、(1)如图,在ABC 中,点 M 是 BC 的中点,过点 M 的直线与直线 AB,AC 分别交于不同的两点 P, Q,若 = = ,则 = . (2)若函数 f(x)= 是奇函数,则 m= . 来源 :Z。 xx。 k.Com方法八、数形结合法 对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以借助图形的直观性迅速做出判断,简捷地解决问题,得出正确的结果,Venn 图、三角函数线、函数的图象及方程的曲线等,都是常用的图形. 例 8、已知实数 x,y 满足 x2+y21,则|2 x+y-4|+|6-x-3y|的最大值是 . 【变式探

    7、究】某网店统计了连续三天售出商品的种类情况:第一天售出 19 种商品,第二天售出 13 种商品,第三天售出 18 种商品; 前两天都售出的商品有 3 种,后两天都售出的商品有 4 种.则该网店 (1)第一天售出但第二天未售出的商品有 种; (2)这三天 售出的商品最少有 种. 方法九、构造法 填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相 应的函数、概率、几何等具体的数学模型,使问题快速

    8、解 决. 例 9、如图,已知球 O 的球面上有四点 A,B,C ,D ,DA 平面ABC,ABBC,DA=AB=BC= ,则球 O 的体积等于 . 来【变式探究】已知正三棱锥 P-ABC,点 P, A,B ,C 都在半径为 的球面上,若PA,PB,PC 两两相互垂直,则球心到截 面 ABC 的距离为 . 【2019 年高考考纲解读】高考选择题、填空题绝大部分属于低中档题目,一般按由易到难的顺序排列,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识解决数学问题的能力. (1)解题策略:选择题、填空题是属于“ 小灵通”题,其解题过程“不讲道理”,所以解题的基本策略是充分

    9、利用题干所提供的信息作出判断,先定性后定量,先特殊后一般,先间接后直接,另外对选择题可以先排除后求解. (2)解决方法:选择题、填空题属“ 小”题,解题的原则是“小”题巧解, “小”题不能大做.主要分直接法和间接法两大类.具体的方法有:直接法,等价转化法,特值、特例法,数形结合法,构造法,对选择题还有排除法(筛选法) 等. 【高考题型示例】方法一、 直接法 直接法就是利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论.这种策略多用于一些定性的问题,是解题最常用的方法. 例 1、(1)已知点 A,B,C 在圆 x2+y2=1 上运动,且 ABBC.若点

    10、 P 的坐标为(2 ,0),则 的最大值为( ) A.6 B.7 C.8 D.9 (2)已知 M(x0,y 0)是双曲线 C: -y2=1 上的一点,F 1,F 2 是 C 的两个焦点,若 0 时, f(x)=f(x-1)-f(x-2), f(x+1)=f(x)-f(x-1)=-f(x-2), f(x+3)=-f(x), f(x+6)=f(x), f(x)是周期为 6 的周期函数, f(2 019)=f(3366+3)=f(3)=f(2)-f(1)=f(1)-f(0)-f(1)=-f(0)=0. 方法二 等价转化法 等价转化法就是用直接法求解时,问题中的某一个量很难求,把所求问题等价转化成另一

    11、个问题后,这一问题的各个量都容易求,从而使问题得到解决.通过转化,把不熟悉、复杂的问题转化为熟悉、简单的问题. 例 2、(1)如图,在正三棱柱 ABC-A1B1C1 中,AB=2,AA 1=3,点 M 是 BB1 的中点,则三棱锥C1-AMC 的体积为 ( ) A. B.C.2 D.2(2)设点 P 是椭圆 +y2=1 上异于长轴端点的一个动点,F 1,F 2 分别为椭圆的左、右焦点,O 为坐标原点,若 M 是F 1PF2 的平分线上一点,F 1MMP,则|OM|的取值范围是 .答案: (1)A (2)C 解析: (1)(方法一)取 BC 中点 D,连接 AD. 在正三棱柱 ABC-A1B1C

    12、1 中,因为 ABC 为正三角 形,所以 ADBC. 又 平面 BCC1B1平面 ABC,交线为 BC,即 AD平 面 BCC1B1,所以点 A 到平面 MCC1 的距离就是 AD.在正三角形 ABC 中,AB=2 ,所以 AD= . 又 AA1=3,点 M 是 BB1 的中点,所以 23=3.所以 3(方法二) 因为 ,所以问题转化为求 23=3.又 BB1平面 ACC1A1,点 M 到平面 ACC1A1 的距离等于点 B 到平面 ACC1A1 的距离,易知正三角形 ABC 底边 AC 上的高为 ,因此, 3(2)x2+ax+10 ax-(x2+1)a-因为函数 f(x)=x+ 在(0,1)

    13、 上是减函数,所以当 x 时,f(x)f +2= ,所以=- ,即 a- ,即 a 的最小值是-【变式探究】已知 a= , b=log23,c=log 34,则 a,b, c 的大小关系是( ) A.alog3 =log34=c, clg x0,命题 q:xR,e x1,则( ) A.命题 pq 是假命题 B.命题 pq 是真命题 C.命题 p( q)是真命题 D.命题 p( q)是假命题 答案 C 解析 取 x0=10,得 x0-2lg x0,则命题 p 是真命题;取 x=-1,得 ex1,不符合题,故排除 D 选项.选 B. 【变式探究】函数 y=xcos x+sin x 的图象大致为(

    14、) 解析 由函数 y=xcos x+sin x 为奇函数,排除 B;当 x= 时,y=- ,排除 A;当 x= 时,y=1 ,排除 C.故答案为 D. 答案 D方法五、图解法( 数形结合法) 在处理数学问题时,将抽象的数学语言与直观的几何图形有机结合起来,通过对图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等 )与某些图形结合起来,利用图象的直观性解决问题,这种方法称为数形结合法. 例 5、函数 f(x)= +2cos x(-2x4)的所有零点之和等于( ) A.2 B.4 C.6 D.8 答案:C由图象可知,函数 g(x)= 的图象关于 x=1 对称,又 x

    15、=1 也是函数 h(x)=-2cos x(-2x4)图象的对称轴, 所以函数 g(x)= (-2x4)和 h(x)=-2cos x(-2x4)图象的交点也关于 x=1 对称,且两函数共有 6 个交点,所以所有零点之和为 6. 【变式探究】已知正三角形 ABC 的边长为 2 ,平面 ABC 内的动点 P,M 满足| |=1,则| |2 的最大值是( )来源:Zxxk.ComA. B. C. D.解析 设ABC 的外心为 D,则| |=| |=| |=2.以 D 为原点,直线 DA 为 x 轴,过点 D 的 DA 的垂线为 y 轴,建立平面直角坐标系,则A(2, 0),B( -1,- ),C(-

    16、1, ).设 P(x,y ),由已知 | |=1,得( x-2)2+y2=1, , M . . | |2= ,它表示圆(x-2) 2+y2=1 上 点(x ,y)与点(-1 ,- 3 )距离平方的 , (| |2)max= +1)2= ,故选 B.答案:B方法 六、直接法 直接法就是从题干给出的条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,直接得出结论. 例/6 、(2018 全国 ,文 16)已知圆锥的顶点为 S,母线 SA,SB 互相垂直,SA 与圆锥底面所成角为 30.若SAB 的面积为 8,则该圆锥的体积为 . 【变式探究】设向量 a=(1,0),b =(-

    17、1,m).若 a(m a-b),则 m= . 答案 -1 解析 由题意,得 ma-b=(m,0)- (-1,m)= (m+1,-m). a (ma-b), a(ma-b)=0,即 m+1=0, m=-1. 方法七、特例法 当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程. 来源:Zxxk.Com例 7、(1)如图,在ABC 中,点 M 是 BC 的中点,过点 M 的直线与直线 AB,AC 分别交于不同的两点 P, Q,若 = = ,

    18、则 = . (2)若函数 f(x)= 是奇函数,则 m= . 答案:(1)2 (2)2 解析:(1)由题意可知, 的值与点 P,Q 的位置无关,而当直线 BC与直线 PQ 重合时,有 =1,所以 =2.(2)显然 f(x)的定义域为(- ,0)(0,+), 令 x=1,x=-1,则 f(-1)+f(1)= =0,m=2.(方法一) = ( )= = ( )= +2 , APBD , =0. =| | |cosBAP=| |2, =2| |2=29=18.(方法二) 把平行四边形 ABCD 看成正方形,则点 P 为对角线的交点,AC= 6,则 =18.方法八、数形结合法 对于一些含有几何背景的填

    19、空题,若能数中思形,以形助数,则往往可以借助图形的直观性迅速做出判断,简捷地解决问题,得出正确的结果,Venn 图、三角函数线、函数的图象及方程的曲线等,都是常用的图形. 例 8、已知实数 x,y 满足 x2+y21,则| 2x+y-4|+|6-x-3y|的最大值是 . 答案:15 解析:画出直线 2x+y-4=0 和 x+3y-6=0 以及圆 x2+y2=1,如图 . 由于整个圆在两条直线的左下方, 所以当 x2+y21 时,有所以|2x+y-4|+|6-x-3y|=-2x-y+4+6-x-3y=-3x-4y+10. 令 t=-3x-4y+10, 则 3x+4y+t-10=0, 所以 x2+

    20、y21 与直线 3x+4y+t-10=0 有公共点, 所以圆心(0,0)到直线的距离 d= 1 ,解得 5t15.所以 t 的最大值为 15,即|2 x+y-4|+|6-x-3y|的最大值为 15. 【变式探究】某网店统计了连续三天售出商品的种类情况:第一天售出 19 种商品,第二天售出 13 种商品,第三天售出 18 种商品; 前两天都售出的商品有 3 种,后两天都售出的商品有 4 种.则该网店 (1)第一天售出但第二天未售出的商品有 种; (2)这三天售出的商品最少有 种. 答案 (1)16 (2)29解析 (1)由于前两天都售出的商品有 3 种,因此第一天售出但第二天未售出的商品有 19

    21、-3=16(种) . (2)同理可知第三天售出但第二天未售出的商品有 18-4=14(种).当前两天都售出的 3 种商品与后两天都售出的 4 种商品有 3 种是一样的,剩下的 1 种商品在第一天未售出;且第三天售出但第二天未售出的 14 种商品都在第一天售出的商品中,此时商品总数最少,为 29 种.如图,分别用 A,B ,C 表示第一、二、三天售出的商品种数. 方法九、构造法 填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经

    22、遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决. 例 9、如图,已知球 O 的球面上有四点 A,B,C ,D ,DA 平面ABC,ABBC,DA=AB=BC= ,则球 O 的体积等于 . 答案: 解析:如图,以 DA,AB ,BC 为棱长构造正方体,设正方体的外接球球 O 的半径为 R,则正方体的体对角线长即为球 O 的直径,所以|CD|= =2R,所以 R= ,故球 O 的体积 V= .来源 :Z&xx&k.Com【变式探究】已知正三棱锥 P-ABC,点 P,A,B,C 都在半径为 的球面上,若PA,PB,PC 两两相互垂直,则球心到截面 ABC 的距离为 .


    注意事项

    本文(2019年高考数学教师版(含解析)之选择题、填空题的解法)为本站会员(姗***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开