欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    人教A版高中数学选修1-1学案:3.1.1 变化率问题_3.1.2 导数的概念

    • 资源ID:76249       资源大小:145.24KB        全文页数:7页
    • 资源格式: DOCX        下载积分:5积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要5积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付说明:
    本站最低充值10积分,下载本资源后余额将会存入您的账户,您可在我的个人中心查看。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教A版高中数学选修1-1学案:3.1.1 变化率问题_3.1.2 导数的概念

    1、3.1 变化率与导数31.1 变化率问题31.2 导数的概念学习目标 1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.3.会利用导数的定义求函数在某点处的导数知识点 1 函数的变化率定义 实例平均变化率函数 yf(x) 从 x1 到 x2 的平均变化率为,f(x2) f(x1)x2 x1简记作:yx平均速度;曲线割线的斜率瞬时变化率函数 yf(x) 在 xx 0 处的瞬时变化率是函数 f(x)从 x0 到 x0x 的平均变化率在 x0 时的极限,即0limxf(x0 x) f(x0)x 0limyx瞬时速度:物体在某一时刻的速度;切线斜率【预习评价】若一质点的运动方程为 st

    2、 21,则在时间段1,2中的平均速度是_解析 3.v (22 1) (12 1)2 1答案 3知识点 2 函数 f(x)在 xx 0 处的导数函数 yf(x) 在 xx 0 处的瞬时变化率 0limxlimx 0 yx 0limlim x 0称为函数 yf(x)在 xx 0 处的导数,记作 f(x0)或 y|xx 0,即f(x0 x) f(x0)xf(x0) .limx 0yx lim x 0f(x0 x) f(x0)x【预习评价】设 f(x)2x1,则 f(1)_解析 f(1) limx 0f(1 x) f(1)x2.0lixlimx 02(1 x) 1 (21 1)x答案 2题型一 平均变

    3、化率【例 1】 已知函数 h(x)4.9x 26.5x10.(1)计算从 x1 到 x1x 的平均变化率,其中 x 的值为2;1;0.1;0.01.(2)根据(1)中的计算,当 x 越来越小时,函数 h(x)在区间1,1x上的平均变化率有怎样的变化趋势?解 (1)yh(1 x )h(1)4.9( x)23.3x, 4.9 x3.3.yx当 x2 时, 4.9x3.313.1;yx当 x1 时, 4.9x3.38.2;yx当 x0.1 时, 4.9x3.33.79;yx当 x0.01 时, 4.9x3.33.349yx(2)当 x 越来越小时,函数 f(x)在区间1,1x上的平均变化率逐渐变大,

    4、并接近于3.3.规律方法 求平均变化率的主要步骤:(1)先计算函数值的改变量 yf(x 2)f(x 1)(2)再计算自变量的改变量 xx 2x 1.(3)得平均变化率 .yx f(x2) f(x1)x2 x1【训练 1】 求函数 f(x) 3x22 在区间x 0,x 0 x上的平均变化率,并求当x02,x0.1 时平均变化率的值解 函数 f(x)3x 22 在区间x 0,x 0x 上的平均变化率为f(x0 x) f(x0)(x0 x) x0 6x 0 3x.6x0x 3(x)2x当 x02,x0.1 时,函数 y3x 22 在区间2,2.1上的平均变化率为6230.112.3.题型二 物体运动

    5、的瞬时速度【例 2】 一辆汽车按规律 s2t 23(时间单位:s,位移单位:m)做直线运动,求这辆汽车在 t2 s 时的瞬时速度解 设在 t2 s 附近的时间增量为 t,则位移的增量 s2(2 t) 23(2 223)8t2(t) 2.因为 82 t, (82t )8,st lim t 0tst lim t 0t所以这辆汽车在 t2 s 时的瞬时速度为 8 m/s.规律方法 求瞬时速度是利用平均速度“逐渐逼近”的方法得到的,其求解步骤如下:(1)由物体运动的位移 s 与时间 t 的函数关系式求出位移增量 ss(t 0t )s(t 0);(2)求时间 t0到 t0 t 之间的平均速度 ,v st

    6、(3)求 的值,即得 tt 0时的瞬时速度limt 0tst【训练 2】 一质点按规律 s(t)at 22t1 做直线运动(位移单位:m ,时间单位:s),若该质点在 t1 s 时的瞬时速度为 4 m/s,求常数 a 的值解 ss(1 t)s(1)a(1t) 22(1 t)1(a3)a(t) 2(2a2)t, a t2a2.st在 t1 s 时,瞬时速度为 2a2,即 2a24,a1.limt 0tst考查方向 题型三 求函数在某点处的导数方向 1 求函数在某点处的导数【例 31】 求函数 f(x)3x 22x 在 x1 处的导数解 y3(1 x)22(1x)(3 1221)3(x) 24x,

    7、 3x4,yx 3(x)2 4xxy| x=1 (3x4)4.limx 0yx lim x 0方向 2 已知函数在某点处的导数求参数【例 32】 已知函数 yax 在 x1 处的导数为 2,求 a 的值1x解 ya(1 x) ax ,11 x (a 11) x1 x a ,yx ax x1 xx 11 x a12,从而 a1.limx 0yx lim x 0(a 11 x)规律方法 求一个函数 yf(x )在 xx 0处的导数的步骤如下:(1)求函数值的变化量 yf(x 0 x)f(x 0);(2)求平均变化率 ;yx f(x0 x) f(x0)x(3)取极限,得导数 f(x0) .limx

    8、0yx【训练 3】 利用导数的定义求函数 f(x)x 23x 在 x2 处的导数解 由导数的定义知,函数在 x2 处的导数f(2) ,而 f(2x)f(2)(2x) 23(2x)limx 0f(2 x) f(2)x3(2 2 32)( x)2 x,于是 f(2) ( x1)1.limx 0 (x)2 xx lim x 0课堂达标1如果质点 M 按规律 s3t 2 运动,则在时间段2,2.1中相应的平均速度是( )A4 B4.1 C0.41 D3解析 4.1.v (3 2.12) (3 22)0.1答案 B2函数 f(x)在 x0 处可导,则 ( )limh 0f(x0 h) f(x0)hA与

    9、x0,h 都有关B仅与 x0 有关,而与 h 无关C仅与 h 有关,而与 x0 无关D与 x0,h 均无关答案 B3若质点 A 按照规律 s3t 2 运动,则在 t3 时的瞬时速度为( )A6 B18 C54 D81解析 因为 st 3(3 t)2 332t 183t,所以 18.18t 3(t)2t lim t 0tst答案 B4若一物体的运动方程为 s7t 28,则其在 t_时的瞬时速度为 1.解析 7t14t,st 7(t t)2 8 (7t2 8)t当 (7t14t) 14t1 时,t .limt 0t114答案 1145已知函数 f(x) ,则 f(1)_x解析 f(1) limx 0f(1 x) f(1)x limx 01 x 1x .limx 011 x 1 12答案 12课堂小结利用导数定义求导数三步曲:(1)作差求函数的增量 yf(x 0 x)f(x 0);(2)作比求平均变化率 ;yx f(x0 x) f(x0)x(3)取极限得导数 f(x0) .limx 0yx简记为一差、二比、三极限.


    注意事项

    本文(人教A版高中数学选修1-1学案:3.1.1 变化率问题_3.1.2 导数的概念)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开