欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020年高考理科数学新课标第一轮总复习练习:7_6空间向量及其应用

    • 资源ID:76858       资源大小:293.50KB        全文页数:13页
    • 资源格式: DOC        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020年高考理科数学新课标第一轮总复习练习:7_6空间向量及其应用

    1、课时规范练(授课提示:对应学生用书第 297 页)A 组 基础对点练1如图,在三棱柱 ABCA 1B1C1 中,平面 ABB1A1 为矩形,ABBC1,AA 1 ,D 为 AA1 的中点,BD 与 AB1 交于点 O,BCAB 1.2(1)证明:CDAB 1;(2)若 OC ,求二面角 ABCB 1 的余弦值33解析:(1)证明:由 AB1B 与DBA 相似,知 DBAB 1,又BCAB 1,BDBCB,AB1平面 BDC,CD 平面 BDC,CDAB 1.(2)由于 OC ,BC1,在ABD 中,可得 OB , BOC 是直角三角形,33 63BOCO.由(1)知 COAB 1,则 CO平面

    2、 ABB1A1.以 O 为坐标原点,OA,OD,OC 所在直线分别为 x 轴,y 轴,z 轴建立空间直角坐标系(图略) ,则 A ,B ,C ,B 1 ,(33,0,0) (0, 63,0) (0,0,33) ( 233,0,0) , , .BC (0,63,33) AB ( 33, 63,0) BB1 ( 233,63,0)设平面 ABC,平面 BCB1的法向量分別为 n1(x 1,y 1,z 1),n 2(x 2,y 2,z 2),则Error!Error!不妨取 n1( ,1, ),n 2(1, ,2),2 2 2cosn 1,n 2 ,n1n2|n1|n2| 27035又二面角 ABC

    3、B 1为钝二面角,二面角 ABCB 1的余弦值为 .270352(2018高考江苏卷 )如图,在正三棱柱 ABCA 1B1C1 中,ABAA 12,点P,Q 分别为 A1B1,BC 的中点(1)求异面直线 BP 与 AC1 所成角的余弦值;(2)求直线 CC1 与平面 AQC1 所成角的正弦值解析:如图,在正三棱柱 ABCA 1B1C1中,设 AC,A1C1的中点分别为 O,O 1,则 OBOC,OO 1OC,OO1OB ,以 为基底,建立空间直角OB ,OC ,OO1 坐标系 Oxyz.因为 AB AA12,所以 A(0, 1,0),B( , 0,0),C(0,1,0),A 1(0,1,2)

    4、,B 1( ,0,2),3 3C1(0,1,2)(1)因为 P 为 A1B1的中点,所以 P ,(32, 12,2)从而 , (0,2,2),BP ( 32, 12,2) AC1 故|cos , | .BP AC1 |BP AC1 |BP |AC1 | | 1 4|522 31020因此,异面直线 BP 与 AC1所成角的余弦值为 .31020(2)因为 Q 为 BC 的中点,所以 Q ,(32,12,0)因此 , (0,2,2), (0,0,2)AQ ( 32,32,0) AC1 CC1 设 n(x,y,z)为平面 AQC1的一个法向量,则Error!即Error!不妨取 n( ,1,1),

    5、设直线 CC1与平面 AQC1所成角为 ,3则 sin |cos ,n | ,CC1 |CC1 n|CC1 |n| 252 55所以直线 CC1与平面 AQC1所成角的正弦值为 .553如图,三棱柱 ABCA 1B1C1 中,侧面 BB1C1C 为菱形,ABB 1C.(1)证明:AC AB 1;(2)若 ACAB 1,CBB 160 ,AB BC,求二面角 AA 1B1C 1 的余弦值解析:(1)证明:连接 BC1,交 B1C 于点 O,连接 AO.因为侧面 BB1C1C 为菱形,所以 B1CBC 1,且 O 为 B1C 及 BC1的中点又 ABB 1C,AB BOB,所以 B1C平面 ABO

    6、.由于 AO平面 ABO,故 B1CAO.又 B1OCO,故 ACAB 1.(2)因为 AC AB1,且 O 为 B1C 的中点,所以 AOCO.因为 ABBC,所以 BOABOC.故 OA OB,从而 OA,OB,OB 1两两互相垂直以 O 为坐标原点, 的方向为 x 轴正方向,| |为单位长,建立如图所示的空OB OB 间直角坐标系 Oxyz.因为CBB 160 ,所以CBB 1为等边三角形,又 ABBC,OCOA,则 A ,B(1,0,0),B 1 ,C .(0,0,33) (0,33,0) (0, 33,0)易知 , , .AB1 (0,33, 33) A1B1 AB (1,0, 33

    7、) B1C1 BC ( 1, 33,0)设 n(x,y,z)是平面 AA1B1的法向量,则Error!即Error!所以可取 n (1, , )3 3设 m 是平面 A1B1C1的法向量,则Error!同理可取 m(1, , )3 3则 cos n,m .nm|n|m| 17所以二面角 AA 1B1C 1的余弦值为 .174(2017高考天津卷 )如图,在三棱锥 PABC 中,PA底面ABC,BAC90.点 D,E,N 分别为棱 PA,PC,BC 的中点,M 是线段 AD的中点,PAAC4,AB2.(1)求证:MN 平面 BDE;(2)求二面角 CEM N 的正弦值;(3)已知点 H 在棱 P

    8、A 上,且直线 NH 与直线 BE 所成角的余弦值为 ,求线段721AH 的长解析:如图,以 A 为原点,分别以 , , 方向为 x 轴,y 轴,z 轴正方AB AC AP 向建立空间直角坐标系依题意可得 A(0,0,0),B (2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2) ,M (0,0,1),N(1,2,0)(1)证明: (0,2,0) , (2,0,2)DE DB 设 n(x,y,z)为平面 BDE 的法向量,则Error!即Error!不妨设 z1,可得 n(1,0,1)又 (1,2 ,1) ,可得 n0.MN MN 因为 MN平面 BDE,所以

    9、 MN平面 BDE.(2)易知 n1(1,0,0) 为平面 CEM 的一个法向量设 n2(x 1,y 1,z 1)为平面 EMN 的法向量,则Error!因为 (0,2, 1),EM (1,2 ,1) ,MN 所以Error!不妨设 y11 ,可得 n2(4,1,2)因此有 cosn 1,n 2 ,n1n2|n1|n2| 421于是 sinn 1,n 2 .10521所以二面角 CEMN 的正弦值为 .10521(3)依题意,设 AHh(0 h4),则 H(0,0,h),进而可得 (1,2,h), ( 2,2,2)NH BE 由已知,得|cos , | NH BE |NH BE |NH |BE

    10、 | ,|2h 2|h2 523 721整理得 10h221h80,解得 h 或 h .85 12所以线段 AH 的长为 或 .85 12B 组 能力提升练1(2018长沙师大附中月考)如图,平行四边形 ABCD 中,DAB 60 ,AB2AD2,M 为 CD 边的中点,沿 BM 将CBM 折起使得平面 BMC平面ABMD.(1)求证:平面 AMC平面 BMC;(2)求四棱锥 CADMB 的体积;(3)求折后直线 AB 与平面 ADC 所成的角的正弦值解析:(1)证明: 平面 BMC平面 ABMD,平面 BMC平面 ABMDMB ,由题易知 AMMB ,且 AM平面 ABMD.AM平面 BMC

    11、,而 AM平面 AMC,平面 AMC平面 BMC.(2)由已知有CMB 是正三角形,取 MB 的中点 O,则 COMB,又平面 BMC平面 ABMD 于 MB,则 CO平面 ABMD,且 CO .32易求得 S 梯形 ABMD (12) .12 32 334VCABDM .13 334 32 38(3)作 MzCO,由(1)知可如图建系,则 A( ,0,0),B(0,1,0) , C ,3 (0,12,32)( , 1,0)AB 3又 ,得 D .MD 12BA ( 32, 12,0) , .CA ( 3, 12, 32) CD ( 32, 1, 32)设平面 ACD 的法向量 n (x,y,

    12、z),则Error!不妨取 n(1 , ,3)3设折后直线 AB 与平面 ADC 所成的角为 ,则 sin .|nAB |n|AB | 39132如图,六面体 ABCDHEFG 中,四边形 ABCD 为菱形,AE,BF ,CG,DH都垂直于平面 ABCD.若 DADHDB4,AE CG3.(1)求证:EGDF;(2)求 BE 与平面 EFGH 所成角的正弦值解析:(1)证明:连接 AC,HF,由 AE 綊 CG 可知四边形 AEGC 为平行四边形,所以 EGAC,而 ACBD,ACBF,所以 EGBD,EGBF,因为BDBFB,所以 EG平面 BDHF,又 DF平面 BDHF,所以 EGDF.

    13、(2)设 ACBDO,EG HFP,由已知可得,平面 ADHE平面 BCGF,所以EHFG,同理可得 EFHG,所以四边形 EFGH 为平行四边形,所以 P 为 EG的中点,又 O 为 AC 的中点,所以 OP 綊 AE,从而 OP平面 ABCD,又 OAOB ,所以 OA,OB,OP 两两垂直,由平面几何知识,得 BF2.如图,建立空间直角坐标系 Oxyz,则 B(0,2,0),E (2 ,0,3),F (0,2,2),3P(0,0,3),所以 (2 ,2,3), (2 ,0,0), (0,2,1)BE 3 PE 3 PF 设平面 EFGH 的法向量为 n(x,y ,z),由Error!可得

    14、Error!令 y1,则 z2,所以 n(0,1,2)设 BE 与平面 EFGH 所成角为 ,则 sin .|BE n|BE |n| 45253(2018高考天津卷 )如图,AD BC 且 AD2BC,ADCD ,EGAD 且EGAD,CDFG 且 CD2FG,DG平面 ABCD,DADCDG2.(1)若 M 为 CF 的中点,N 为 EG 的中点,求证:MN 平面 CDE;(2)求二面角 EBCF 的正弦值;(3)若点 P 在线段 DG 上,且直线 BP 与平面 ADGE 所成的角为 60,求线段 DP的长解析:依题意,可以建立以 D 为原点,分别以 , , 的方向为 x 轴,y 轴,z 轴

    15、的正方向的空间直角坐标系(如图),DA DC DG 可得 D(0,0,0),A(2,0,0) , B(1,2,0),C(0,2,0),E(2,0,2),F (0,1,2),G (0,0,2),M,N(1,0,2) (0,32,1)(1)证明:依题意 (0,2,0), (2,0,2)DC DE 设 n0(x,y,z)为平面 CDE 的法向量,则Error!即Error!不妨令 z1,可得 n0(1,0,1)又 ,可得 n00,MN (1, 32,1) MN 又因为直线 MN平面 CDE,所以 MN平面 CDE.(2)依题意,可得 ( 1,0,0), (1,2,2), (0,1,2)BC BE C

    16、F 设 n(x,y,z)为平面 BCE 的法向量,则Error!即Error!不妨令 z1,可得 n(0,1,1)设 m( x,y, z)为平面 BCF 的法向量,则Error!即Error!不妨令 z1,可得 m(0,2,1)因此有 cosm,n ,mn|m|n| 31010于是 sinm,n .1010所以二面角 EBCF 的正弦值为 .1010(3)设线段 DP 的长为 h(h 0,2),则点 P 的坐标为(0,0,h),可得(1,2,h)BP 易知 (0,2,0)为平面 ADGE 的一个法向量,DC 故|cos | ,BP DC |BP DC |BP |DC | 2h2 5由题意,可得

    17、 sin 60 ,2h2 5 32解得 h 0,2所以线段 DP 的长为 .33 334直三棱柱 ABCA 1B1C1 中,AA 1AB AC1,E ,F 分别是 CC1,BC 的中点,AEA 1B1,D 为棱 A1B1 上的点(1)证明:DFAE ;(2)是否存在一点 D,使得平面 DEF 与平面 ABC 所成锐二面角的平面角的余弦值为 ?若存在,说明点 D 的位置,若不存在,请说明理由1414解析:(1)证明: AEA 1B1,A 1B1AB,ABAE,又 ABAA 1, AEAA 1A,AB平面 A1ACC1,又 AC平面 A1ACC1,ABAC.以 A 为坐标原点建立如图所示的空间直角

    18、坐标系 Axyz,则 A(0,0,0),E ,F ,A 1(0,0,1),B 1(1,0,1)(0,1,12) (12,12,0)设 D(x,y,z), ,且 0,1,A1D A1B1 即(x,y,z1)(1,0,0) , D(,0,1), ,又 ,DF (12 ,12, 1) AE (0,1,12) 0, DFAE.DF AE 12 12(2)假设存在满足条件的点 D,设平面 DEF 的法向量为 n(x ,y,z) ,则Error! , ,FE ( 12,12,12) DF (12 ,12, 1)Error!即Error!令 z2(1),得 n(3,12,2(1)由题可知平面 ABC 的法向量为 m(0,0,1),平面 DEF 与平面 ABC 所成锐二面角的平面角的余弦值为 ,1414|cos m,n| ,|mn|m|n| 1414即 ,|21 |9 1 22 41 2 1414解得 或 (舍去)12 74当点 D 为 A1B1中点时,满足要求


    注意事项

    本文(2020年高考理科数学新课标第一轮总复习练习:7_6空间向量及其应用)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开