1、2018-2019 学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题(每小题 2 分,共 16 分)1 (2 分)如图“数字图形”中,中心对称图形有( )A1 个 B 2 个 C3 个 D4 个2 (2 分)一个布袋里装有 2 个红球,3 个黑球,4 个白球,它们除颜色外都相同,从中任意摸出 1 个球,则下列事件中,发生可能性最大的是( )A摸出的是白球 B摸出的是黑球C摸出的是红球 D摸出的是绿球3 (2 分)下列调查中,适合采用抽样调查的是( )A对乘坐高铁的乘客进行安检B调意本班学装的身高C为保证某种新研发的战斗机试飞成功,对其零部件进行检查D调查一批英雄牌钢笔的使用寿命4 (
2、2 分)中华汉字,源远流长某校为了传承中华优秀传统文化,组织了一次全校 3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,学校随机抽取了其中 200 名学生的成绩进行统计分析,下列说法正确的是( )A这 3000 名学生的“汉字听写 ”大赛成绩的全体是总体B每个学生是个体C200 名学生是总体的一个样本D样本容量是 30005 (2 分)在 , ,0.7xy+y 3, , 中,分式有( )1x25abmn5bcaA2 个 B 3 个 C4 个 D5 个6 (2 分)菱形具有而平行四边形不一定具有的性质是( )A对角相等 B对边相等 C邻边相等 D对边平行7 (2 分)若 x+ 3,求
3、的值是( )1241xA B C D81028 (2 分)如图,已知正方形 ABCD,对角线的交点 M(2,2) 规定“把正方形 ABCD 先沿 x 轴翻折,再向左平移 1 个单位”为一次变换如此这样,连续经过 2014 次变换后,正方形 ABCD 的对角线交点 M 的坐标变为( )A (2012,2) B ( 2012,2) C (2013,2) D (2013,2)二、填空题(每小题 2 分,共 20 分)9 (2 分) (1)当 x 时,分式 有意义;21x(2)当 x 时,分式 的值为 03|x10 (2 分)已知反比例函数的解析式为 y 则 a 的取值范围是 |2x11 (2 分)一
4、个不透明的袋子中装有 4 个红球、2 个黑球,它们除颜色外其余都相同,从中任意摸出 3 个球,则事件“摸出的球至少有 1 个红球”是 事件(填“必然” 、 “随机”或“不可能” )12 (2 分)当 m 时,解分式方程 会出现增根53xm13 (2 分)若关于 x 的方程 3 的解为正数,则 m 的取值范围是 x14 (2 分)如图,在ABC 中,D,E 分别是 AB,AC 的中点,F 是线段 DE 上一点,连接 AF,BF,若 AB16,EF1,AFB90,则 BC 的长为 15 (2 分)如图,B(3,3) ,C(5,0) ,以 OC,CB 为边作平行四边形 OABC,则经过点 A 的反比
5、例函数的解析式为 16 (2 分)对于反比例函数 y ,下列说法正确的是 2x图象分布在第二、四象限;当 x0 时, y 随 x 的增大而增大;图象经过点(1,2) ;若点 A(x 1,y 1) ,B(x 2,y 2)都在图象上,且 x1x 2,则 y1y 217 (2 分)如图,已知一次函数 yax+b 和反比例函数 y 的图象相交于 A(2,y 1) 、kB(1,y 2)两点,则不等式 ax+b 的解集为 kx18 (2 分)已知矩形 ABCD,AB6,AD8,将矩形 ABCD 绕点 A 顺时针旋转 (0360)得到矩形 AEFG,当 时,GCGB 三、解答题(共 64 分)19 (10
6、分)计算:(1) ( ) 3 ( ) 22abcdca(2) ( )221-abb20 (10 分)解方程:(1) 3x(2) 1 2x21 (6 分)先化简( a+1) ,然后将1、0、 、1、2 中,所有你认为212合适的数作为 a 的值,代入求值22 (3 分)如图 44 的正方形网格中,将MNP 绕某点旋转一定的角度,得到M1N1P1,请用尺规作图法确定旋转中心 O 点(保留作图痕迹,标出 O 点) 23 (7 分)某学校为了解今年八年级学生足球运球的掌握情况,随机抽取部分八年级学生足球运球的测试成绩作为一个样本,按 A、B、C 、D 四个等级进行如图不完整的统计图根据所给信息,解答以
7、下问题:(1)在扇形统计图中,C 对应的扇形的圆心角是 度;(2)补全条形统计图、扇形统计图;(3)该校八年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多少人?24 (6 分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院 1200m 和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是 3:4,结果小明比小刚提前 4min 到达剧院求两人的速度25 (7 分)为打造美丽校园,小明、小红为校园内的一块空地分别提供了如图甲、乙的设计方案,其中阴影部分都用于绿化,图甲空白区域修建一座雕像,图乙空白区域修建石子小路已知 S 甲 表示图甲中绿化的面积 S 乙
8、表示图乙中绿化的面积(1)S 甲 (用含 a,b 的代数式表示) ;(2)设 k ,FZ请用含 a,b 的代数式表示 k 并化简;当 2S 甲 S 乙 a2 时,求 k 的值9826 (8 分)如图,在 RtABC 中,ACB90,D 、E 分别是 AB、AC 的中点,连接CD,过 E 作 EFDC 交 BC 的延长线于 F(1)证明:四边形 CDEF 是平行四边形;(2)若四边形 CDEF 的周长是 16cm,AC 的长为 8cm,求线段 AB 的长度27 (7 分)平面直角坐标系 xOy 中,点 A、B 分别在函数 y1 (x0) ,与3y2 (x0)的图象上,A 、B 的横坐标分别为 a
9、、b (a、b 为任意实数)3(1)若 ABx 轴,求OAB 的面积;(2)作边长为 2 的正方形 ACDE,使 ACx 轴,点 D 在点 A 的左上方,那么,当 a3 时,CD 边与函数 y1 (x 0)的图象有交点,请说明理由32018-2019 学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题 2 分,共 16 分)1 【分析】利用中心对称图形的定义回答即可【解答】解:2,0,1,9 四个数中中心对称图形有 2,0,1 共 3 个,故选:C【点评】考查了中心对称图形的定义,解题的关键是了解中心对称图形的定义,难度不大2 【分析】个数最多的就是可能性最大
10、的【解答】解:因为白球最多,所以被摸到的可能性最大故选:A【点评】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等3 【分析】对于精确度要求高的调查,事关重大的调查往往选用普查适合普查的方式一般有以下几种:范围较小;容易掌控;不具有破坏性;可操作性较强【解答】解:A、对乘坐高铁的乘客进行安检,必须普查;B、调意本班学生的身高,必须普查;C、为保证某种新研发的战斗机试飞成功,对其零部件进行检查,必须普查;D、调查一批英雄牌钢笔的使用寿命,适合抽样调查;故选:D【点评】本题考查的是普查和抽样调查的选择调查方式
11、的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查4 【分析】解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物 ”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,考查对象是组织了一次全校 3000 名学生参加的“汉字听写”大赛的成绩,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量【解答】解:A、这 3000 名学
12、生的“汉字听写”大赛成绩的全体是总体,正确;B、每个学生的“汉字听写”大赛成绩是个体,错误;C、200 名学生的“汉字听写 ”大赛成绩是总体的一个样本,错误;D、样本容量是 200,错误;故选:A【点评】考查统计知识的总体,样本,个体等相关知识点,要明确其定义易错易混点:学生易对总体和个体的意义理解不清而错选5 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式【解答】解: , ,0.7xy+y 3, , 中,分式有 , , 一共1x25abmn5bca1xm+n5bca3 个故选:B【点评】本题主要考查分式的定义,分母中含有字母则是分式,如果不含有字
13、母则不是分式6 【分析】菱形拥有平行四边形的全部性质,且菱形的各边长相等且对角线互相垂直,分析 A、B、C 、D 选项的正确性,即可解题【解答】解:菱形具有平行四边形的全部性质,(A)平行四边形对角相等,故本选项错误;(B)平行四边形对边相等,故本选项错误;(C)邻边平行的平行四边形为菱形,故本选项正确,(D)平行四边形对边平行,故本选项错误故选:C【点评】本题考查了平行四边形对边平行且相等的性质,考查了菱形各边长相等的性质,本题中熟练掌握菱形的性质是解题的关键7 【分析】把 x+ 3 两边平方后,得到即 7,先计算出原代数式的倒数121x 的值后,再计算原代数式的值42x22【解答】解:x+
14、 3,1x(x+ ) 29,即 927, 7+18,421x22x 241x8故选:A【点评】此题要熟悉完全平方公式,同时注意先求它的倒数,可以约分,简便计算8 【分析】根据题意求得第 1 次、2 次、3 次变换后的对角线交点 M 的对应点的坐标,即可得规律:第 n 次变换后的点 M 的对应点的为:当 n 为奇数时为(2n,2) ,当 n 为偶数时为(2n,2) ,继而求得把正方形 ABCD 连续经过 2014 次这样的变换得到正方形ABCD 的对角线交点 M 的坐标【解答】解:对角线交点 M 的坐标为(2,2) ,根据题意得:第 1 次变换后的点 M 的对应点的坐标为(21,2) ,即(1,
15、2) ,第 2 次变换后的点 M 的对应点的坐标为:( 22,2) ,即(0,2) ,第 3 次变换后的点 M 的对应点的坐标为( 23,2) ,即(1,2) ,第 n 次变换后的点 M 的对应点的为:当 n 为奇数时为(2n,2) ,当 n 为偶数时为(2n,2) ,连续经过 2014 次变换后,正方形 ABCD 的对角线交点 M 的坐标变为(2012,2) 故选:A【点评】此题考查了点的坐标变化,对称与平移的性质得到规律:第 n 次变换后的对角线交点 M 的对应点的坐标为:当 n 为奇数时为(2n,2) ,当 n 为偶数时为(2n,2)是解此题的关键二、填空题(每小题 2 分,共 20 分
16、)9 【分析】 (1)根据分式有意义的条件可得 x+10,再解即可;(2)根据分式值为零的条件可得 3|x |0,且 x+30,再解即可【解答】解:(1)由题意得:x+10,解得:x1,故答案为:1;(2)由题意得:3|x |0,且 x+30,解得:x3,故答案为:3【点评】此题主要考查了分式值为零和有意义的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零;式有意义的条件是分母不等于零10 【分析】根据反比例函数解析式中 k 是常数,不能等于 0 解答即可【解答】解:由题意可得:|a| 20,解得:a2,故答案为:a2【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中 k
17、 的取值范围解答11 【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可【解答】解:一个不透明的袋子中装有 4 个红球、2 个黑球,它们除颜色外其余都相同,从中任意摸出 3 个球,则事件“摸出的球至少有 1 个红球”是必然事件故答案为:必然【点评】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件12 【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为 0 的未知数的值【解答】解:分式方程可化为:x5m ,由分母可知,
18、分式方程的增根是 3,当 x3 时,35m ,解得 m2,故答案为:2【点评】本题考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为 0 确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值13 【分析】根据解分式方程的方法求出题目中分式方程的解,然后根据关于 x 的方程3 的解为正数和 x30 可以求得 m 的取值范围xm【解答】解: 3,xm方程两边同乘以 x3,得x+m3m3(x 3)去括号,得x+m3m3x 9移项及合并同类项,得2x2m+9系数化为 1,得x ,92关于 x 的方程 3 的解为正数且 x30,mx ,2903解得,m 且 m 92【点评】本
19、题考查分式方程的解,解一元一次不等式组,解答本题的关键是明确它们各自的计算方法14 【分析】根据直角三角形的性质得到 DF8,根据 EF1,得到 DE9,根据三角形中位线定理解答即可【解答】解:AFB90,点 D 是 AB 的中点,DF AB8,12EF1,DE9,D、E 分别是 AB,AC 的中点,BC2DE18,故答案为:18【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键15 【分析】设 A 坐标为(x ,y ) ,根据四边形 OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可【解答
20、】解:设 A 坐标为(x,y ) ,B(3,3) ,C(5,0) ,以 OC,CB 为边作平行四边形 OABC,x+50+3,y+003,解得:x2,y 3,即 A(2,3) ,设过点 A 的反比例解析式为 y ,kx把 A(2,3)代入得:k6,则过点 A 的反比例解析式为 y ,6x故答案为:y 6x【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键16 【分析】根据反比例函数的性质对各小题进行逐一分析即可【解答】解:k20,图象分布在第二、四象限,正确;当 x0 时, y 随 x 的增大而增大,正确;图象经过点(1,2) ,正确;若点
21、A(x1,y1) ,B(x2, y2)都在图象上,且 0x1x2,则 y1y2 故错误正确的有:,故答案为:【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象既是轴对称图形,又是中心对称图形是解答此题的关键17 【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集【解答】解:观察函数图象,发现:当2x0 或 x1 时,一次函数图象在反比例函数图象的下方,则不等式 ax+b 的解集是2x0 或 x1k故答案为:2x0 或 x1【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式本题属于基础题,难度不大,解决
22、该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键18 【分析】当 GBGC 时,点 G 在 BC 的垂直平分线上,分两种情况讨论,依据DAG 60,即可得到旋转角 的度数【解答】解:当 GBGC 时,点 G 在 BC 的垂直平分线上,分两种情况讨论:当点 G 在 AD 右侧时,取 BC 的中点 H,连接 GH 交 AD 于 M,GCGB,GHBC,四边形 ABHM 是矩形,AMBH AD AG,12GM 垂直平分 AD,GDGA DA ,ADG 是等边三角形,DAG 60 ,旋转角 60 ;当点 G 在 AD 左侧时,同理可得ADG 是等边三角形,DAG 60 ,旋
23、转角 360 60300故答案为:60 或 300【点评】本题考查了旋转的性质,矩形的性质,利用分类讨论思想解决问题是本题的关键三、解答题(共 64 分)19 【分析】 (1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得【解答】解:(1)原式( ) ;63abcd24ca38b(2)原式 21()()abab ()() ()aba 21a【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则20 【分析】 (1)分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解;(2
24、)分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【解答】解:(1)去分母得:2x3x9,解得:x9,经检验 x9 是分式方程的解;(2)去分母得:x 2+2xx 2 x+23,解得:x1,经检验 x1 是增根,分式方程无解【点评】此题考查了解分式方程,熟练掌握运算法则是解本题的关键21 【分析】先化简分式,然后代入 a 求值【解答】解:原式 )21a2 1a2 a 210,a0,a1,0,当 a2 时,原式 ,21当 a 时,原式1【点评】本题考查了分式的化简求值,熟练分解因式是解题的关键22 【分析】利用关于点对称图形的性质得出对应点到旋转中心的距离
25、相等,进而作出对应点连线的垂直平分线进而得出其交点【解答】解:如图所示;O 点即为所求【点评】此题主要考查了图形的旋转变换,利用关于点对称的图形性质得出是解题关键23 【分析】 (1)先由 B 等级人数及其所占百分比求出总人数,由各等级人数之和等于总人数得出 C 等级人数,从而可用 360乘以 C 等级人数占总人数的比例即可得;(2)由各等级人数之和等于总人数得出 C 等级人数,根据百分比概念求出 A、C 等级对应的百分比,由百分比之和等于 1 求出 D 等级对应的百分比,从而补全图形;(3)用总人数乘以样本中 A 等级对应的百分比即可得【解答】解:(1)1845%40,即在这次调查中一共抽取
26、了 40 名学生,在扇形统计图中,C 对应的扇形的圆心角是: 360 117,40185故答案为:117;(2)C 等级的人数为:40 418513,A 等级对应的百分比为 100%10% ,C 等级对应的百分比为 100%32.5%,01340则 D 等级对应的百分比为 1 (10%+45%+32.5% )12.5%,补全图形如下:(3)估计足球运球测试成绩达到 A 级的学生有 30010%30(人) 【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答24 【分析】设小明的速度为 3x 米/ 分,则小刚的速度为 4x 米/分,根据时间路程
27、速度结合小明比小刚提前 4min 到达剧院,即可得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设小明的速度为 3x 米/ 分,则小刚的速度为 4x 米/分,根据题意得: 4,20x1解得:x25,经检验,x25 是分式方程的根,且符合题意,3x75,4x100答:小明的速度是 75 米/分,小刚的速度是 100 米/ 分【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键25 【分析】 (1)根据 S 甲 边长为 a 的正方形的面积边长为 2b 的正方形的面积列式即可;(2 ) 先根据 S 乙边长为 a 的正方形的面积长为 a、宽为 b 的长方形的面积2
28、 求出图乙中绿化的面积,再代入 k 化简即可;FZS根据 2S 甲 S 乙 a2 列出方程,即可求出 k 的值98【解答】解:(1)S 甲a2 (2b )2 a24b2故答案为 a24b2;(2 ) S 乙 a22ab ,k ;FZ24ab(2)ab22S 甲S 乙 a2,982 ( a24b2)(a22ab) a2,98化简,得 a216ab+64b20,a 8b,k 2b854【点评】本题考查了列代数式,正方形、长方形的面积以及分式的化简,正确求出甲、乙两图中绿化的面积是解题的关键26 【分析】 (1)由三角形中位线定理推知 EDFC,2DEBC,然后结合已知条件“EFDC” ,利用两组对
29、边相互平行得到四边形 DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到 AB2DC,即可得出四边形 DCFE 的周长AB +BC,故 BC16AB,然后根据勾股定理即可求得【解答】 (1)证明:D、E 分别是 AB、AC 的中点,ED 是 RtABC 的中位线,EDFCBC2DE,又 EFDC,四边形 CDEF 是平行四边形;(2)解:四边形 CDEF 是平行四边形;DCEF ,DC 是 RtABC 斜边 AB 上的中线,AB2DC,四边形 DCFE 的周长AB+BC,四边形 DCFE 的周长为 16cm,AC 的长 8cm,BC16AB,在 RtABC 中,A
30、CB 90,AB 2BC 2+AC2,即 AB2(16AB ) 2+82,解得:AB10cm,【点评】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键27 【分析】 (1)点 A、B 的坐标分别为(a, ) 、 (b, ) ,ABx 轴,则 ,3a3ab即可求解;(2)设点 A(a, ) ,则点 C(a2, ) ,点 D(a2, ) ,点 F(a2, ) ,33验证 2FC0,即可求解【解答】解:(1)A、B 的横坐标分别为 a、b,则点 A、B 的坐标分别为(a, ) 、 (b, ) ,3ABx 轴,则 ,3b则 ab,ABab2a,SOAB 2a 3;1(2)如图所示:a3,AC2,则直线 CD 在 y 轴右侧且平行于 y 轴,CD 一定与函数有交点,设交点为F,设点 A(a, ) ,则点 C(a 2, ) ,点 D(a2, ) ,点 F(a2, )333则 2FC2 + ,3(1)a3,a30,a20,故 2FC0,FC2,即点 F 在线段 CD 上,即当 a3 时,CD 边与函数 y1 (x0)的图象有交点3【点评】本题考查的是反比例函数和正方形的性质,该类问题最重要的就是,确定关键点如点 D、F 的坐标,进而求解