欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020年中考总复习:锐角三角函数综合复习学案含解析

    • 资源ID:87909       资源大小:542.69KB        全文页数:25页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020年中考总复习:锐角三角函数综合复习学案含解析

    1、2020年中考总复习:锐角三角函数综合复习【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】 【考点梳理】考点一、锐角三角函数的概念如图所示,在RtABC中,C90,A所对的边BC记为a,叫做A的对边,也叫做B的邻边,B所对的边AC记为b,叫做B的对边,也是A的邻边,直角C所对的边AB记为c,叫做斜边 锐角A的对边与斜边的比叫做A的正弦,记作sinA,即;锐角A的邻边与

    2、斜边的比叫做A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做A的正切,记作tanA,即.同理;要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值角的度数确定时,其比值不变,角的度数变化时,比值也随之变化(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,不能理解成sin与A,cos与A,tan与A的乘积书写时习惯上省略A的角的记号“”,但对三个大写字母表示成的角(如AEF),其正切应写成“tanAEF”,不能写成“tanAEF”;另外,、常写成、(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在

    3、某个三角形中而不存在(4)由锐角三角函数的定义知:当角度在0A90之间变化时,tanA0考点二、特殊角的三角函数值利用三角函数的定义,可求出30、45、60角的各三角函数值,归纳如下:锐角3045160要点诠释:(1)通过该表可以方便地知道30、45、60角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角(2)仔细研究表中数值的规律会发现: 、的值依次为、,而、的值的顺序正好相反,、的值依次增大,其变化规律可以总结为:当角度在0A90之间变化时, 正弦、正切值随锐角度数的增大(或减小)而增大(或减小), 余弦值随锐角度数的增大(或减

    4、小)而减小(或增大)考点三、锐角三角函数之间的关系如图所示,在RtABC中,C=90(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在RtABC中,C=90,A、B、C所对的边分别为a、b、c,则有:三边之间的关系:a2+b2=c2(勾股定理).锐角之间的关系:A+B=90.边角之间的关系:

    5、,.,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤RtABC两边两直角边(a,b)由求A,B=90A,斜边,一直角边(如c,a)由求A,B=90A,一边一角一直角边和一锐角锐角、邻边(如A,b)B=90A,锐角、对边(如A,a)B=90A,斜边、锐角(如c,A)B=90A,要点诠释:1在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标

    6、明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三

    7、角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图中,目标方向PA,PB,PC的方位角分别为是40,135,245.

    8、(4)方向角:指北或指南方向线与目标方向线所成的小于90的水平角,叫做方向角,如图中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30,南偏东45,南偏西80,北偏西60.特别如:东南方向指的是南偏东45,东北方向指的是北偏东45,西南方向指的是南偏西45,西北方向指的是北偏西45.要点诠释:1解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据

    9、条件选择合适的方法求解.【典型例题】类型一、锐角三角函数的概念与性质1如图,在44的正方形网格中,tan=( )(A)1 (B)2 (C) (D) 【思路点拨】把放在一个直角三角形中,根据网格的长度计算出的对边和邻边的长度.【答案】B;【解析】根据网格的特点:设每一小正方形的边长为1,可以确定的对边为2,邻边为1,然后利用正切的定义, 故选B.【总结升华】本题考查锐角三角函数的定义及运用,可将其转化到直角三角形中解答,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边举一反三:【变式】在RtABC中,C=90,若AC=2BC,则sinA的值是( )(A) (B)2 (C) (D) 【答

    10、案】选C.因为C=90,所以.类型二、特殊角的三角函数值2已知a3,且,以a、b、c为边长组成的三角形面积等于( ) A6 B7 C8 D9【思路点拨】根据题意知求出b、c的值,再求三角形面积.【答案】A;【解析】根据题意知 解得 所以a3,b4,c5,即,其构成的三角形为直角三角形,且C90,所以【总结升华】利用非负数之和等于0的性质,求出b、c的值,再利用勾股定理的逆定理判断三角形是直角三角形,注意tan45的值不要记错举一反三:【变式】计算:.【答案】原式.3如图所示,在ABC中,BAC120,AB10,AC5,求sinBsinC的值 【思路点拨】 为求sin B,sin C,需将B,C

    11、分别置于直角三角形之中,另外已知A的邻补角是60,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B、C向CA、BA的延长线作垂线,即可顺利求解【答案与解析】解:过点B作BDCA的延长线于点D,过点C作CEBA的延长线于点E BAC120,BAD60ADABcos60105;BDABsin6010又CDCA+AD10, 同理,可求得 【总结升华】由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线等方法将其置于直角三角形中举一反三:【变式】如图,机器人从A点,沿着西南方向,行了个单位,到达B点后观察到原点O在它的南偏东60的方向上,则原来A

    12、的坐标为_.(结果保留根号)【答案】类型三、解直角三角形及应用4在ABC中,A30,BC3,AB,求BCA的度数和AC的长【思路点拨】由于A是一个特殊角,且已知AB,故可以作AC边上的高BD(如图所示),可求得由于此题的条件是“两边一对角”,且已知角的对边小于邻边,因此需要判断此题的解是否唯一,要考虑对边BC与AC边上的高BD的大小,而,所以此题有两解【答案与解析】解:作BDAC于D (1)C1点在AD的延长线上在ABC1中,C160由勾股定理,可分别求得,AC1AD+DC1(2)C2点在AD上由对称性可得,BC2DC160,BC2A120, 综上所述,当BCA60时,AC6;当BCA120时

    13、,AC3【总结升华】由条件“两边一对角”确定的三角形可能不是唯一的,需要考虑第三边上的高的大小判断解是否唯一5如图所示,某船向正东航行在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30方向,又航行了半小时到D处,望见灯塔C恰在西北方向,若船速为每小时20海里,求A,D两点间的距离(结果保留根号) 【思路点拨】作CEAD,用CE可以表示出AE、DE,根据AD的长,可以得到关于CE的方程,就可以求得CE的长【答案与解析】 解:作CEAD于E,设CEx(海里), CADCDA45, CEAEDEx 在RtCEB中,CBE60,BEDE-BDx-10解得 AD2x(30+)(海里) 答:A,

    14、D两点间的距离为海里【总结升华】 解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线 已知斜三角形中的SSS,SAS,ASA,AAS以及SSA条件,求三角形中的其他元素是常见问题,注意划归为常见的两个基本图形(高在三角形内或高在三角形外)(如图所示):举一反三:【变式】坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖砌八角形十三层楼阁式建筑数学活动小组开展课外实践活动,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子(1)小华利用测角仪和皮尺测量塔高下图为小华测量塔高的示意图她先在塔前的平地上选择一点A,用测角仪

    15、测出看塔顶(M)的仰角35,在点A和塔之间选择一点B,测出看塔顶(M)的仰角45,然后用皮尺量出A,B两点间的距离为18.6m,量出自身的高度为1.6m请你利用上述数据帮助小华计算出塔的高度(tan350.7,结果保留整数)(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP的长为am(如图所示),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题: 在你设计的测量方案中,选用的测量工具是:_;要计算出塔的高,你还需要测量哪些数据?_.【答案】 解:(1)设CD的延长线交MN于E点,MN长为x m,则ME(x-1.6)m 45, DEMEx-1.6 CEx-1.6+18.6x+

    16、17 , ,解得x45太子灵踪塔MN的高度为45m (2)测角仪、皮尺; 站在P点看塔顶的仰角、自身的高度(注:答案不唯一)6如图所示,海上有一灯塔P,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A点处测得P在它的北偏东60方向,继续行驶20分钟后,到达B处又测得灯塔P在它的北偏东45方向,问客轮不改变方向继续前进有无触礁的危险? 【思路点拨】要得出有无触礁的危险,需求出轮船在航行过程中离点P的最近距离,然后与暗礁区的半径进行比较,若大于则无触礁的危险,若小于则有触礁的危险.【答案与解析】 解:过P作PCAB于C点,根据题意知: AB93,PAB90-6030, PBC

    17、90-4545,PCB90 PCBC在RtAPC中, , 即 3 答:客轮不改变方向继续前进无触礁危险 【总结升华】此题主要考查解直角三角形的有关知识通过数学建模把实际问题转化为解直角三角形问题中考总复习:锐角三角函数综合复习巩固练习(基础)【巩固练习】一、选择题1. 如图所示,在RtABC中,ACB90,BC1,AB2,则下列结论正确的是 ( ) Asin A Btan A CcosB Dtan B 第1题 第2题2如图,在RtABC中,ACB=90,CDAB,垂足为D若AC=,BC=2,则sinACD的值为()A B CD3在ABC中,若三边BC、CA、AB满足 BCCAAB=51213,

    18、则cosB=( )A B C D4如图所示,在ABC中,C=90,AD是BC边上的中线,BD=4,AD=2,则tanCAD的值是()A.2 B. C. D. 第4题 第6题5如果ABC中,sinA=cosB=,则下列最确切的结论是( )A. ABC是直角三角形 B. ABC是等腰三角形C. ABC是等腰直角三角形 D. ABC是锐角三角形6如图,已知:45A90,则下列各式成立的是()A.sinA=cosA B.sinAcosA C.sinAtanA D.sinAcosA二、填空题7若的余角是30,则cos的值是 .8如图,ABC的顶点都在方格纸的格点上,则sinA=_. 第8题 第12题9计

    19、算2sin30sin245+tan30的结果是 .10已知是锐角,且sin(+15)=.计算的值为 .11观察下列各式:sin 59sin 28;0cos1(是锐角);tan 30tan60tan 90;tan 441其中成立的有 .(填序号)12如图,正方体的棱长为3,点M,N分别在CD,HE上,CM=DM,HN=2NE,HC与NM的延长线交于点P,则tanNPH的值为 三、解答题13如图所示,我市某广场一灯柱AB被一钢缆CD固定,CD与地面成40夹角,且DB5m,现要在C点上方2m处加固另一条钢缆ED,那么EB的高为多少米?(结果保留三个有效数字)14. 已知:如图所示,八年级(1)班数学

    20、兴趣小组为了测量河两岸建筑物AB和建筑物CD的水平距离AC,他们首先在A点处测得建筑物CD的顶部D点的仰角为25,然后爬到建筑物AB的顶部B处测得建筑物CD的顶部D点的俯角为1530已知建筑物AB的高度为30米,求两建筑物的水平距离AC(精确到0.1米)(可用计算器查角的三角函数值)15如图所示,“五一”期间在某商贸大厦上从点A到点B悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上小明在四楼D点测得条幅端点A的仰角为30,测得条幅端点B的俯角为45;小雯在三楼C点测得条幅端点A的仰角为45,测得条幅端点B的俯角为30若设楼层高度CD为3 m,请你根据小明和小雯测得的数据求出条幅

    21、AB的长(结果精确到个位,参考数据1.732)16. 如图所示,某水库大坝的横断面是梯形,坝顶宽AD2.5m,坝高4 m,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽BC. 【答案与解析】一、选择题1.【答案】D;【解析】sinA,tan A,cosB故选D.2.【答案】A;【解析】在直角ABC中,根据勾股定理可得:AB=3B+BCD=90,ACD+BCD=90,B=ACD sinACD=sinB=,故选A3.【答案】C;【解析】根据三角函数性质 cosB=,故选C4.【答案】A;【解析】AD是BC边上的中线,BD=4,CD=BD=4,在RtACD中,AC= ,tanCAD=2故选

    22、A5.【答案】C;【解析】sinA=cosB=,A=B=45,ABC是等腰直角三角形故选C6.【答案】B;【解析】45A90,根据sin45=cos45,sinA随角度的增大而增大,cosA随角度的增大而减小,当A45时,sinAcosA,故选B二、填空题7【答案】;【解析】=9030=60,cos=cos60=8【答案】;【解析】过C作CDAB,垂足为D,设小方格的长度为1, 在RtACD中,AC=2,sinA=.9【答案】+; 【解析】2sin30sin245+ tan30=2()2+()2+=1+=+10【答案】3;【解析】sin60=,+15=60,=45,原式=241+1+3=311

    23、【答案】; 【解析】sin 59sin 28成立,0cos1(是锐角)成立,tan 30tan 60tan 90,tan 44tan 45,即tan 441成立12【答案】; 【解析】正方体的棱长为3,点M,N分别在CD,HE上,CM=DM,HN=2NE,MC=1,HN=2,DCEH,HC=3,PC=3,PH=6,tanNPH=,故答案为:三、解答题13.【答案与解析】 解:在RtBCD中,BDC40,DB5 m, BCDBtanBDC5tan404.195(米) EBBC+CE4.195+26.20(米)14.【答案与解析】解:如图所示,过D作DHAB,垂足为H设ACx在RtACD中,ACD

    24、90,DAC25,所以CDACtanDACx tan 25在RtBDH中,BHD90,BDH1530,所以BHDHtan 1530ACtan 1530xtan 1530 又CDAH,AH+HBAB,所以x(tan 25+tan 1530)30所以(米)答:两建筑物的水平距离AC约为40.3米15.【答案与解析】 解:过D作DMAE于M,过C作CNAE于N, 则MNCD3 m,设AMx,则ANx+3, 由题意:ADM30,ACN45 在RtADM中,DMAMcot30, 在RtANC中,CNANx+3 又DMCNMB, ,解之得,ABAM+MBx+x+32+311(m) 16.【答案与解析】解:背水坡是指AB,而迎水坡是指CD.过A作AEBC于E,过D作DFBC于F, 由题意可知tanB1,tan C, 在RtABE中,AE4,tanB1,BEAE4, 在RtDFC中,DFAE4,tanC, CF15DF1.546 又EFAD2.5, BCBEEFFC42.56125 答:坝底宽BC为125 m


    注意事项

    本文(2020年中考总复习:锐角三角函数综合复习学案含解析)为本站会员(牛***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开