1、2017-2018学年江苏省苏州市相城区七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卡相应位置上.)1(3分)已知三角形的两边分别为4和9,则此三角形的第三边可能是()A4B5C9D132(3分)下列图形中,由ABCD能得到12的是()ABCD3(3分)下列运算正确的是()Axx2x2B(xy)2xy2C(x2)3x6Dx2+x2x44(3分)一个多边形的内角和为720,那么这个多边形是()A七边形B六边形C五边形D四边形5(3分)下列语句中,属于定义的是()A两点确定一条直线B平行线的同位角相等C两点之间
2、线段最短D直线外一点到直线的垂线段的长度,叫做点到直线的距离6(3分)苏州市2018年2月1日的气温是t,这天的最高气温是5,最低气温是2,则当天我市气温t()变化范围是()At5Bt2C2t5D2t57(3分)下列各式能用平方差公式计算的是()A(2a+b)(2ba)B(1+x)(x1)C(a+b)(a2b)D(2x1)(2x+1)8(3分)下列各组数,既不是二元一次方程2x+y3的解,又不是二元一次方程组的解的是()ABCD9(3分)关于x的不等式组恰有五个整数解,那么m的取值范围为()A2m1B2m1Cm1Dm210(3分)如图,已知D是ABC的边BC上个点,DEAB于点E,DFAC于点
3、F,BDDG,DEDF,AD与EF交于点H下列结论:(1)AD平分BAC,(2)BDGF,(3)ABAF+FG,(4)图中共有3对全等三角形,其中一定正确的有()A1个B2个C3个D4个二、填空题:(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.)11(3分)()1 12(3分)因式分解:a29 13(3分)今年“五一”假日全国共接待国内游客1.47亿人次将数1.47亿用科学记数法表示的结果是 14(3分)把方程4x+y15改写成用含x的式子表示y的形式,得y 15(3分)对顶角相等的逆命题是 命题(填写“真”或“假”)16(3分)若是二元一次方程组的解,则a+b值为
4、17(3分)如图,已知D,E分别是ABC中AB,AC边上的中点,F是AB上中线CD上的中点,若四边形ADFE的面积是6,则ABC的面积是 18(3分)已知有理数x,y满足2x3y4,并且x1,y2,现有kxy,则k的最小值是 三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔.)19(8分)计算:(1)()22341+(3.14)0;(2)(a)2+a7a(a2)320(8分)因式分解:(1)m34nm2+4n2m;(2)a4(ab)421(6分)先化简,再求值:(2a+b)(2ab)(3ab)2+6a(a
5、b),其中a,b122(8分)(1)方程组:;(2)不等式:123(5分)如图:在正方形网格中有一个格点三角形ABC,(即ABC的各顶点都在格点上),按要求进行下列作图:(1)画出ABC中AB边上的高CD;(2)画出将ABC先向左平移2格,再向上平移3格后的ABC;(3)画直线l,将ABC分成两个面积相等的三角形24(6分)如图,点C在线段AE上,BCDE,ACDE,BCCE;延长AB分别交CD,ED于G,F(1)求证:ABCD;(2)若ACB65,DCE75,求FGC的度数25(7分)某商场购进A、B两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示类型价格A型B型进价(元/
6、个)20002600售价(元/个)28003700(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B型智能扫地机器人多少个?26(8分)先阅读下面的内容,再解决问题:问题:对于形如x2+2xa+a2,这样的二次三项式,可以用公式法将它分解成(x+a)2的形式但对于二次三项式x2+2xa3a2,就不能直接运用公式了此时,我们可以在二次三项式x2+2xa3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa3a2
7、(x2+2xa+a2)a23a2(x+a)24a2(x+a)24a2(x+a)2(2a)2(x+3a)(xa)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”利用“配方法”,解决下列问题:(1)分解因式:a28a+15;(2)若a2+b214a8b+65+|mc|0当a,b,m满足条件:2a4b8m时,求m的值;若ABC的三边长是a,b,c,且c边的长为奇数,求ABC的周长27(10分)如图,直线CBOA,CA112,E,F在CB上,且满足FOBAOB,OE平分COF(1)求EOB的度数;(2)若平行移动AB,那么OBC:OFC的值是否随之发生变
8、化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使OECOBA?若存在,求出其度数;若不存在,说明理由28(10分)如图,在等腰ABC中,ABAC12厘米,BC8厘米(1)如图1,设等腰ABC底边上的高是h1,腰上的高是h2,则h1与h2的关系是 ;(2)如图2,已知点E从B点出发,沿折线BCAB,以x厘米/秒的速度运动;同时,点F从点C出发,沿折线CABC,以y厘米/秒的速度运动,若运动1秒时,点E与点F所运动的路程之和是5厘米;若运动8秒时,F点正好追及E点,求点E,F的运动速度x,y的值;(3)如图3,已知点D为AB的中点,如果
9、点E在线段BC上以2厘米/秒的速度由B点向C点运动,同时点F在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动要使BED与CFE在某一时刻全等,求点F的运动速度2017-2018学年江苏省苏州市相城区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卡相应位置上.)1(3分)已知三角形的两边分别为4和9,则此三角形的第三边可能是()A4B5C9D13【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择【解答】解:根据三角形的三边关系,得第
10、三边大于5,而小于13故选:C【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单2(3分)下列图形中,由ABCD能得到12的是()ABCD【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用【解答】解:A、ABCD,13,23,12,故A正确;B、ABCD,1+2180,故A错误;C、ABCD,BADCDA,若ACBD,可得12;故C错误;D、若梯形ABCD是等腰梯形,可得12,故D错误故选:A【点评】此题主要考查了平行线的性质,解决问题的关键是掌握平行线的性质定理3(3分)下列运算正确的是()Axx2x2B(xy)2xy
11、2C(x2)3x6Dx2+x2x4【分析】根据同底数幂的除法,底数不变指数相减,合并同类项,系数相加字母和字母的指数不变,同底数幂的乘法,底数不变指数相加,幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解【解答】解:A、xx2x3同底数幂的乘法,底数不变指数相加,故本选项错误;B、(xy)2x2y2,幂的乘方,底数不变指数相乘,故本选项错误;C、(x2)3x6,幂的乘方,底数不变指数相乘,故本选项正确;D、x2+x22x2,故本选项错误故选:C【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题,难度适中4(3分)一个多边形的内角和为7
12、20,那么这个多边形是()A七边形B六边形C五边形D四边形【分析】n边形的内角和可以表示成(n2)180,设这个正多边形的边数是n,就得到方程,从而求出边数【解答】解:这个正多边形的边数是n,则(n2)180720,解得:n6故这个正多边形是六边形故选:B【点评】考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解5(3分)下列语句中,属于定义的是()A两点确定一条直线B平行线的同位角相等C两点之间线段最短D直线外一点到直线的垂线段的长度,叫做点到直线的距离【分析】根据定义的概念对各个选项进行分析,从而得到答案【解答】解:A两点确定一条直线,这是一个命题
13、;B平行线的同位角相等,这是一个命题;C两点之间线段最短,这是一个命题;D直线外一点到直线的垂线段的长度,叫做点到直线的距离不是命题,这是一个定义;故选:D【点评】此题考查了命题与定理以及定义,关键是能根据命题与定理以及定义的区别得出属于定义的语句6(3分)苏州市2018年2月1日的气温是t,这天的最高气温是5,最低气温是2,则当天我市气温t()变化范围是()At5Bt2C2t5D2t5【分析】根据不等式的定义进行选择即可【解答】解:这天的最高气温是5,最低气温是2,当天我市气温t()变化范围是2t5,故选:D【点评】本题考查了不等式的定义,掌握不等式的定义是解题的关键7(3分)下列各式能用平
14、方差公式计算的是()A(2a+b)(2ba)B(1+x)(x1)C(a+b)(a2b)D(2x1)(2x+1)【分析】运用平方差公式(a+b)(ab)a2b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方【解答】解:A、中不存在互为相同或相反的项,不能用平方差公式计算,故本选项错误;B、x是相同的项,互为相反项是1与1,符合平方差公式的要求,故本选项正确;C、中不存在相反的项,不能用平方差公式计算,故本选项错误;D、中符合完全平方公式,不能用平方差公式计算,故本选项错误;因此A、C、D都不符合平方差公式的要求故选:B【点评】考查了平方差公式,运用平方差公式计算时,关键要找相同
15、项和相反项,其结果是相同项的平方减去相反项的平方8(3分)下列各组数,既不是二元一次方程2x+y3的解,又不是二元一次方程组的解的是()ABCD【分析】根据方程的解满足方程,代入检验,可得答案【解答】解:当x2,y1时,2x+y3,故A不符合题意;B、是二元一次方程组的解,故B不符合题意;C、是2x+y3的解,故C不符合题意;D、既不是二元一次方程2x+y3的解,又不是二元一次方程组的解,故D符合题意;故选:D【点评】本题考查了二元一次方程的解,代入检验是解题关键9(3分)关于x的不等式组恰有五个整数解,那么m的取值范围为()A2m1B2m1Cm1Dm2【分析】可先用m表示出不等式组的解集,再
16、根据恰有五个整数解可得到关于m的不等组,可求得m的取值范围【解答】解:,解不等式可得xm,解不等式可得x3,由题意可知原不等式组有解,原不等式组的解集为mx3,该不等式组恰好有四个整数解,整数解为1,0,1,2,3,2m1故选:A【点评】本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有五个整数解的应用10(3分)如图,已知D是ABC的边BC上个点,DEAB于点E,DFAC于点F,BDDG,DEDF,AD与EF交于点H下列结论:(1)AD平分BAC,(2)BDGF,(3)ABAF+FG,(4)图中共有3对全等三角形,其中一定正确的有()A1个B2个C3个D4个【分析】(1)根据角
17、平分线的性质的逆定理可得出AD平分BAC,结论(1)正确;(2)由DEDF、BEDGFD90、BDGD可证出BDEGDF,根据全等三角形的性质可得出BDGF,结论(2)正确;(3)利用全等三角形的判定定理AAS可证出ADEADF,由此可得出AEAF,根据BDEGDF可得出BEGF,结合ABAE+EB即可得出ABAF+FG,结论(3)正确;(4)根据全等三角形的性质可得有4对三角形全等,结论(4)不正确【解答】解:(1)DEAB,DFAC,DEDF,AD平分BAC,结论(1)正确;(2)在BDE和GDF中,BDEGDF(HL),BDGF,结论(2)正确;(3)在ADE和ADF中,ADEADF(A
18、AS),AEAFBDEGDF,BEGF,ABAE+EBAF+FG,结论(3)正确;(4)ADEADF,BDEGDF,同理可得AEHAFH,EDHFDH,图中共有4对全等三角形,结论(4)不正确综上所述:正确的结论有(1)(2)(3)故选:C【点评】本题考查了全等三角形的判定与性质以及角平分线的性质,根据全等三角形的判定与性质和角平分线的性质逐一分析四条结论的正误是解题的关键二、填空题:(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.)11(3分)()12【分析】根据负整指数幂的意义,可得答案【解答】解:原式2,故答案为:2【点评】本题考查了负整指数幂,负整数指数为正整数
19、指数的倒数12(3分)因式分解:a29(a+3)(a3)【分析】a29可以写成a232,符合平方差公式的特点,利用平方差公式分解即可【解答】解:a29(a+3)(a3)【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键13(3分)今年“五一”假日全国共接待国内游客1.47亿人次将数1.47亿用科学记数法表示的结果是1.47108【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:1.47亿1.47108
20、,故答案为:1.47108【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值14(3分)把方程4x+y15改写成用含x的式子表示y的形式,得y4x+15【分析】将x看做已知数求出y即可【解答】解:4x+y15,y4x+15,故答案为:4x+15【点评】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数15(3分)对顶角相等的逆命题是假命题(填写“真”或“假”)【分析】先根据互逆命题的定义写出对顶角相等的逆命题,再判断真假【解答】解:“对顶角相等”的逆命题是:相等的角是对顶角,它是假
21、命题故答案为:假【点评】本题考查了互逆命题及真假命题的定义两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题;正确的命题叫做真命题,错误的命题叫做假命题16(3分)若是二元一次方程组的解,则a+b值为【分析】根据方程组的解的定义得出关于a、b的方程组,解之求得a、b的值即可得出答案【解答】解:根据题意知,将ba代入5ab5,得:5aa5,解得:,所以a+b+,故答案为:【点评】本题主要考查二元一次方程组的解,解题的关键是根据方程组的解的定义列出关于a、b的方程组17(3分)如图,已知D,E分别
22、是ABC中AB,AC边上的中点,F是AB上中线CD上的中点,若四边形ADFE的面积是6,则ABC的面积是16【分析】连接AF、BF,设SAEFa,则SADF6a,根据等底等高的三角形的面积相等得出SCEFSAEFa,SADFSBDF6a,SADFSAFC2SAEF,求出SBDFSBFC6a,6a2a,求出a2,再代入求出即可【解答】解:连接AF、BF,设SAEFa,则SADF6a,E、F、D分别为AC、CD、AB的中点,ADBD,DFCF,AECE,SCEFSAEFa,SADFSBDF6a,SADFSAFC2SAEF,SBDFSBFC6a,6a2a,解得:a2,SADF624,SBDF4,SB
23、FC4,SCEF+2,SAEF2,SABCSADF+SBDF+SBFC+SCEF+SAEF4+4+4+2+216故答案为:16【点评】本题考查了线段的中点和三角形的面积,能灵活运用等底等高的三角形的面积相等求解是解此题的关键18(3分)已知有理数x,y满足2x3y4,并且x1,y2,现有kxy,则k的最小值是1【分析】将2x3y4与kxy联立方程,用k来表示x,y,再根据x1,y2,转化为关于k的不等式组,求出解集1k3,得到k最小值【解答】解:由得,x1,y2,解得1k3,k的最小值为1,故答案为1【点评】本题考查了一次函数的性质,解一元一次不等式组,用k来表示x、y是解题的关键三、解答题:
24、(本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔.)19(8分)计算:(1)()22341+(3.14)0;(2)(a)2+a7a(a2)3【分析】(1)先计算乘方、负整数指数幂、零指数幂,再计算乘法,最后计算加减可得;(2)先计算乘方、同底数幂的除法、幂的乘方,再合并同类项即可得【解答】解:(1)原式8+12+1;(2)原式a2+a6a6a2【点评】本题主要考查实数的运算与整式的运算,解题的关键是掌握负整数指数幂、零指数幂及同底数幂的除法、幂的乘方的运算法则20(8分)因式分解:(1)m34nm2+4n2m;(2)
25、a4(ab)4【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可【解答】解:(1)原式m(m24mn+4n2)m(m2n)2;(2)原式a2+(ab)2a2(ab)2ba2+(ab)2(2ab)b(2ab)(2a22ab+b2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键21(6分)先化简,再求值:(2a+b)(2ab)(3ab)2+6a(ab),其中a,b1【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值【解答】解:原式4a2b29a2
26、+6abb2+6a26aba22b2,当a,b1时,原式21【点评】此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键22(8分)(1)方程组:;(2)不等式:1【分析】(1)利用加减消元法求解可得;(2)根据解一元一次不等式的步骤依次计算可得【解答】解:(1),+2,得:13x13,解得:x1,将x1代入,得:5+2y6,解得:y,所以方程组的解为;(2)去分母,得:2(2x1)63(x+4),去括号,得:4x263x12,移项,得:4x+3x12+2+6,合并同类项,得:7x4,系数化为1,得:x【点评】本题主要考查解一元一次不等式与二元一次方程组的能力,解题的关键是掌握解一
27、元一次不等式的步骤和加减消元法解方程组的能力23(5分)如图:在正方形网格中有一个格点三角形ABC,(即ABC的各顶点都在格点上),按要求进行下列作图:(1)画出ABC中AB边上的高CD;(2)画出将ABC先向左平移2格,再向上平移3格后的ABC;(3)画直线l,将ABC分成两个面积相等的三角形【分析】(1)直接利用钝角三角形高线作法得出答案;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形中线平分其面积进而得出答案【解答】解:(1)如图所示:CD即为所求;(2)如图所示:ABC,即为所求;(3)如图所示:CE即为所求【点评】此题主要考查了平移变换以及基本作图,正确得出对应点位
28、置是解题关键24(6分)如图,点C在线段AE上,BCDE,ACDE,BCCE;延长AB分别交CD,ED于G,F(1)求证:ABCD;(2)若ACB65,DCE75,求FGC的度数【分析】(1)根据SAS证明ABC与DCE全等,进而证明即可;(2)利用全等三角形的性质和三角形的内角和以及三角形的外角性质解答即可【解答】证明:(1)BCDE,ACBCED,在ABC与DCE中,ABCDCE(SAS),ABCD;(2)ABCDCE,AD,ABCDCE75,ACB65,AD180756540,FBCA+ACB40+65105,BCDE,DFBFBC105,FGCD+DFB40+105145【点评】本题主
29、要考查的是全等三角形的性质和判定,找出ABC与DCE全等的条件是解题的关键25(7分)某商场购进A、B两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示类型价格A型B型进价(元/个)20002600售价(元/个)28003700(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B型智能扫地机器人多少个?【分析】(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据总价单价数量结合购进A、B两种型号的智能扫地机器人60个共花费14.4万元,即可
30、得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60m)个,根据总利润单台利润购进数量结合总利润不少于53000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中最小的整数即可得出结论【解答】解:(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据题意得:,解得:答:购进A型智能扫地机器人20个,购进B型智能扫地机器人40个(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60m)个,根据题意得:(37002600)m+(28002000)(60m)53000,解得:mm为整数,m17
31、答:至少需购进B型智能扫地机器人17个【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式26(8分)先阅读下面的内容,再解决问题:问题:对于形如x2+2xa+a2,这样的二次三项式,可以用公式法将它分解成(x+a)2的形式但对于二次三项式x2+2xa3a2,就不能直接运用公式了此时,我们可以在二次三项式x2+2xa3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa3a2(x2+2xa+a2)a23a2(x+a)
32、24a2(x+a)24a2(x+a)2(2a)2(x+3a)(xa)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”利用“配方法”,解决下列问题:(1)分解因式:a28a+15;(2)若a2+b214a8b+65+|mc|0当a,b,m满足条件:2a4b8m时,求m的值;若ABC的三边长是a,b,c,且c边的长为奇数,求ABC的周长【分析】(1)根据题目中的例子,可以对题目中的式子分解因式;(2)根据题目中的式子,利用配方法可以求得a、b的值,从而可以求得m的值;根据中a、b的值和题意可以求得ABC的周长【解答】解:(1)a28a+15(a28a
33、+16)1(a4)212(a3)(a5);(2)a2+b214a8b+65+|mc|0,(a214a+49)+(b28b+16)+|mc|0,(a7)2+(b4)2+|mc|0,a70,b40,解得,a7,b4,2a4b8m,27448m,272823m,21523m,153m,解得,m5;由知,a7,b4,ABC的三边长是a,b,c,3c11,又c边的长为奇数,c5,7,9,当a7,b4,c5时,ABC的周长是:7+4+516,当a7,b4,c7时,ABC的周长是:7+4+718,当a7,b4,c9时,ABC的周长是:7+4+920【点评】本题考查因式分解的应用、同底数幂的乘法、幂的乘方与积
34、的乘方、三角形三边关系,解答本题的关键是明确它们各自的计算方法27(10分)如图,直线CBOA,CA112,E,F在CB上,且满足FOBAOB,OE平分COF(1)求EOB的度数;(2)若平行移动AB,那么OBC:OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使OECOBA?若存在,求出其度数;若不存在,说明理由【分析】(1)根据两直线平行,同旁内角互补求出AOC,然后求出EOBAOC,计算即可得解;(2)根据两直线平行,内错角相等可得AOBOBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得OFC
35、2OBC,从而得解;(3)根据三角形的内角和定理求出COEAOB,从而得到OB、OE、OF是AOC的四等分线,再利用三角形的内角和定理列式计算即可得解【解答】解:(1)CBOA,AOC180C18011268,OE平分COF,COEEOF,FOBAOB,EOBEOF+FOBAOC6834;(2)OBC:OFC的值不变CBOA,AOBOBC,FOBAOB,FOBOBC,OFCFOB+OBC2OBC,OBC:OFC1:2,是定值;(3)在COE和AOB中,OECOBA,COAB,COEAOB,OB、OE、OF是AOC的四等分线,COEAOC6817,OEC180CCOE1801121751,故存在
36、某种情况,使OECOBA,此时OECOBA51【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键28(10分)如图,在等腰ABC中,ABAC12厘米,BC8厘米(1)如图1,设等腰ABC底边上的高是h1,腰上的高是h2,则h1与h2的关系是h1h2;(2)如图2,已知点E从B点出发,沿折线BCAB,以x厘米/秒的速度运动;同时,点F从点C出发,沿折线CABC,以y厘米/秒的速度运动,若运动1秒时,点E与点F所运动的路程之和是5厘米;若运动8秒时,F点正好追及E点,求点E,F的运动速度x,y
37、的值;(3)如图3,已知点D为AB的中点,如果点E在线段BC上以2厘米/秒的速度由B点向C点运动,同时点F在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动要使BED与CFE在某一时刻全等,求点F的运动速度【分析】(1)如图1中,作AEBC于E,BDAC于D根据SABCBCAEACBD,可得结论;(2)构建方程组即可解决问题;(3)分两种情形:当BDEC,BECF时,BED与CFE全等,当BDCF,BEEC时,BDECFE,分别求解即可解决问题;【解答】解:(1)如图1中,作AEBC于E,BDAC于DSABCBCAEACBD,8h112h2,h1h2,故答案为h1h2(2
38、)如图2中,由题意:,解得点E,F的运动速度分别为1cm/s和4cm/s(3)如图3中,当BDEC,BECF时,BED与CFE全等,点D为AB的中点,BDAB6cm,BDEC,BE862(cm),点E在线段BC上以2厘米/秒的速度由B点向C点运动,运动时间时1s,DBEPCF,BECF2cm,v212;当BDCF,BEEC时,BDECFE,BD6cm,EBEC,FC6cm,BC8cm,BE4cm,运动时间为422(s),v623(cm/s)故y的值为2或3【点评】本题考查三角形综合题、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用面积法解决线段之间的关系,学会用分类讨论的射线思考问题,属于中考压轴题