欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    专题1.2 极值点偏移问题利器——极值点偏移判定定理-2020届高考数学压轴题讲义(解答题)(原卷版)

    • 资源ID:89869       资源大小:612KB        全文页数:5页
    • 资源格式: DOC        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    专题1.2 极值点偏移问题利器——极值点偏移判定定理-2020届高考数学压轴题讲义(解答题)(原卷版)

    1、专题02:极值点偏移问题利器极值点偏移判定定理一、极值点偏移的判定定理对于可导函数,在区间上只有一个极大(小)值点,方程的解分别为,且,(1)若,则,即函数在区间上极(小)大值点右(左)偏;(2)若,则,即函数在区间上极(小)大值点右(左)偏.证明:(1)因为对于可导函数,在区间上只有一个极大(小)值点,则函数的单调递增(减)区间为,单调递减(增)区间为,由于,有,且,又,故,所以,即函数极(小)大值点右(左)偏;来源:学&科&网Z&X&X&K(2)证明略.左快右慢(极值点左偏) 左慢右快(极值点右偏)左快右慢(极值点左偏) 左慢右快(极值点右偏)二、运用判定定理判定极值点偏移的方法1、方法概

    2、述:(1)求出函数的极值点;(2)构造一元差函数;(3)确定函数的单调性;(4)结合,判断的符号,从而确定、的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数满足,为函数的极值点,求证:.(1)讨论函数的单调性并求出的极值点; 假设此处在上单调递减,在上单调递增.(2)构造; 注:此处根据题意需要还可以构造成的形式.(3)通过求导讨论的单调性,判断出在某段区间上的正负,并得出与的大小关系;来源:Z.xx.k.Com假设此处在上单调递增,那么我们便可得出,从而得到:时,.(4)不妨设,通过的单调性,与的大小关系得出结论;接上述情况,

    3、由于时,且,故,又因为,且在上单调递减,从而得到,从而得证.(5)若要证明,还需进一步讨论与的大小,得出所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为,故,由于在上单调递减,故.来源:学。科。网【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求的单调性、极值点,证明与(或与)的大小关系;若试题难度较大,则直接给出形如或的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.来源:学_科_网Z_X_X_K三、新题展示【2019湖南郴州二中月考】已知函数,(1)若,求函数

    4、的单调区间;(2)设(i)若函数有极值,求实数的取值范围;(ii)若(),求证:【2019江西赣州十四县(市)期中联考】已知函数(为常数),曲线在与轴的交点A处的切线与轴平行(1)求的值及函数的单调区间;(2)若存在不相等的实数使成立,试比较与的大小 四、对点详析,利器显锋芒已知函数.(1)求函数的单调区间和极值;(2)若,且,证明:.函数与直线交于、两点.证明:. 来源:学#科#网Z#X#X#K已知函数,若,且,证明:.来源:Z.xx.k.Com已知函数有两个零点.设是的两个零点,证明:.五、招式演练已知函数,其中为自然对数的底数,是的导函数.()求的极值;()若,证明:当,且时, .来源:学科网已知函数,其中来源:学科网ZXXK(1)若函数有两个零点,求的取值范围;来源:Zxxk.Com(2)若函数有极大值为,且方程的两根为,且,证明: .


    注意事项

    本文(专题1.2 极值点偏移问题利器——极值点偏移判定定理-2020届高考数学压轴题讲义(解答题)(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开