欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020年高考理科数学《导数的综合应用》题型归纳与训练

    • 资源ID:91854       资源大小:576.50KB        全文页数:10页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020年高考理科数学《导数的综合应用》题型归纳与训练

    1、 2020年高考理科数学导数的综合应用题型归纳与训练【题型归纳】题型一 含参数的分类讨论例1 已知函数,导函数为,(1)求函数的单调区间;(2)若在1,3上的最大值和最小值。【答案】略【解析】(I),(下面要解不等式,到了分类讨论的时机,分类标准是零) 当单调递减; 当的变化如下表:+00+极大值极小值 此时,单调递增, 在单调递减; (II)由 由(I)知,单调递增。【易错点】搞不清分类讨论的时机,分类讨论不彻底【思维点拨】分类讨论的难度是两个,(1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理,由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,

    2、要做到不重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。题型二 已知单调性求参数取值范围问题 例1 已知函数, 若函数在上是单调增函数,求的取值范围【答案】【解析】,依题意在上恒有成立,方法1:函数,对称轴为,故在上单调递增,故只需即可,得,所以的取值范围是;方法2: 由,得,只需,易得,因此,所以的取值范围是;【易错点】本题容易忽视中的等号【思维点拨】已知函数在区间可导:1. 在区间内单调递增的充要条件是如果在区间内,导函数,并且在的任何子区间内都不恒等于零;2. 在区间内单调递减的充要条件是如果在区间内,导函数,并且在的任何子区间内都不恒等于零;说明:1.已知函数在区间可导,则

    3、在区间内成立是在内单调递增的必要不充分条件2.若为增函数,则一定可以推出;更加具体的说,若为增函数,则或者,或者除了x在一些离散的值处导数为零外,其余的值处都;3. 时,不能简单的认为为增函数,因为的含义是或,当函数在某个区间恒有时,也满足,但在这个区间为常函数.题型三 方程与零点1已知函数,若存在三个零点,则的取值范围是( )A. B. C. D. 【答案】D【解析】很明显 ,由题意可得: ,则由 可得 ,由题意得不等式: ,即: ,综上可得的取值范围是 .本题选择D选项. 【易错点】找不到切入点,“有三个零点”与函数的单调性、极值有什么关系?挖掘不出这个关系就无从下手。【思维点拨】函数零点

    4、的求解与判断(1)直接求零点:令f(x)0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间a,b上是连续不断的曲线,且f(a)f(b)0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点题型四、导数证明不等式例1 当时,证明不等式成立。【答案】略【解析】设则 在内单调递减,而 故当时,成立。【易错点】不能顺利把不等式转化为等价的函数、方程问题【思维点拨】注意观察不等式的结构,选择合理的变形,构造函数,把不等式问题转化为

    5、函数的极值、最值问题。【巩固训练】题型一 含参的分类讨论1. 已知函数 (I)求的单调区间; (II)若在0,1上单调递增,求a的取值范围。【答案】略【解析】(I) 当且仅当时取“=”号,单调递增。 当变化时,、的变化如下表:1+00+极大值极小值 (II)当恒成立。 由(I)可知 若上单调递减,上不单增,不符合题意;综上,a的取值范围是0,1 2. 已知函数,求函数的极值. 【答案】略【解析】由可知: 当时,函数为上的增函数,函数无极值; 当时,由,解得; 时,时, 在处取得极小值,且极小值为,无极大值. 综上:当时,函数无极值 当时,函数在处取得极小值,无极大值. 3. 已知,求的单调区间

    6、。【答案】略【解析】函数的导数 ()当时,若,则;若,则;则在(,0)内为减函数,在(0,)内为增函数。()当a0时,由0则在(,)内为增函数,在(0,)内为增函数。由0,在(,0)内为减函数。()当a0时,由00x-,在(0,)内为增函数。由0x-,在(,0)(-,+)内为减函数。4. 若函数没有极值点,求的取值范围。【答案】略【解析】由已知可得 ,若函数不存在极值点,则在方程即中,有,解之得规律小结:极值点的个数,一般是使方程根的个数,一般情况下导函数若可以化成二次函数,我们可以利用判别式研究,若不是,我们可以借助图形研究。题型二 已知单调性求参数范围已知在R上是减函数,求的取值范围。【答

    7、案】略【解析】:对求导得,由题意可知对任意实数恒有, 讨论:(1) 当,显然不符合题意;(2) 当时也不符合题意;(3) 当时,依题意必有,即,综上可知的取值范围是3.已知,函数在是一个单调函数。(1) 试问函数在上是否为单调减函数?请说明理由;(2) 若函数在上是单调增函数,试求的取值范围。【答案】略【解析】解:(1),若函数在区间上单调递减,则在上恒成立,即对恒成立,这样的值不存在。所以函数在区间上不是单调减函数。 (2)函数在区间上是单调增函数,则,即在上恒成立,在此区间上,从而得规律小结:函数在区间上递增,递减在此基础上再研究参数的取值范围(一般可用不等式恒成立理论求解)注意:解出的参

    8、数的值要是使恒等于0,则参数的这个值应舍去,否则保留。题型三 方程与零点1.已知函数,若存在唯一的零点,且,则的取值范围是( )A B C D【答案】C【解析】当时,函数有两个零点,不符合;当时,令,得,可知在必有一个零点,也不符合;当时,得,故选C2.设为实数,函数 ,当为何值时,方程恰好有两个实数根.【答案】略【解析】求导得,当或时,;当,;在和单调递减,在在单调递增,的极小值为,的极大值为; 要使方程恰好有两个实数根,只需的图象与轴恰有两个公共点,画出的草图,且或且;或故当或时,方程恰有两个实数根.3.若函数,当时,函数有极值,(1)求函数的解析式;(2)若函数有3个解,求实数的取值范围

    9、【答案】略【解析】求导得, (1)由题意,得 所求解析式为(2)由(1)可得: 令,得或 当变化时,、的变化情况如下表:单调递增单调递减单调递增因此,当时,有极大值 当时,有极小值 函数的图象大致如图: 由图可知: 题型四、导数证明不等式1、当时,证明不等式成立。【答案】略【解析】设则令则当时,在上单调递增,而 在上恒成立,即在恒成立。在上单调递增,又即时,成立。2、已知函数其中,为常数.当时,证明:对任意的正整数,当时,有。【答案】略【解析】证法一:, 当为偶数时,令则.当时,单调递增,又 ,恒成立,成立。当为奇数时, 要证,由于,只需证, 令 , 则 当时,单调递增,又, 当时,恒有, 即,命题成立.综上所述,结论成立.证法二:当时,当时,对任意的正整数,恒有,故只需证明令,则当时,故在上单调递增,因此,当时,即成立.故当时,有.即.3、 设函数,证明:当时,;【答案】略【解析】证明:所以在上单增,而故当时,4、已知函数,设,证明:【答案】略【解析】证明:,设 当时 ,当时 ,即在上为减函数,在上为增函数,又 ,即 设 ,当时,因此在区间上为减函数;因为,又 ,即 故综上可知,当 时,9


    注意事项

    本文(2020年高考理科数学《导数的综合应用》题型归纳与训练)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开