1、22.2二次函数与一元二次方程,第二十二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点) 2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点) 3.了解用图象法求一元二次方程的近似根.,导入新课,情境引入,问题 如图,以40m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2, 考虑以下问题:,讲授新课,(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?,1
2、5,1,3,当球飞行1s或3s时,它的高度为15m.,解:解方程 15=20t-5t2,t2-4t+3=0,t1=1,t2=3.,你能结合上图,指出为什么在两个时间求的高度为15m吗?,h=20t-5t2,(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?,你能结合图形指出为什么只在一个时间球的高度为20m?,20,4,解方程: 20=20t-5t2, t2-4t+4=0, t1=t2=2.,当球飞行2秒时,它的高度为20米.,h=20t-5t2,(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?,你能结合图形指出为什么球不能达到20.5m的高度?,20.5,解方程:
3、20.5=20t-5t2, t2-4t+4.1=0, 因为(-4)2-4 4.1 0,有两个重合的交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0的解集 是_; 不等式ax2+bx+c0的解集 是_.,y,x1=-1, x2=3,x3,-1x2的解集是_; 不等式ax2+bx+c2的解集是_.,3,-1,O,x,2,(4,2),(-2,2),x1=-2, x2=4,x4,-2x0(a0)的解集是x2 的一切实数,那么函数y=ax2+bx+c的图象与 x轴有_ 个交点,坐标是_.方程ax2+bx+c=0的根是_.,1,(2,0),x=2,2,O,x,问题3:
4、如果方程ax2+bx+c=0 (a0)没有实数根,那么函数y=ax2+bx+c的图象与 x轴有_个交点; 不等式ax2+bx+c0时, ax2+bx+c0无解;,(2)当a0时, ax2+bx+c0;-x2+x+20;x2-4x+40;-x2+x-20.,x1=-1 , x2=2,1 x2,x1-1 , x22,x2-4x+4=0,x=2,x2的一切实数,x无解,-x2+x-2=0,x无解,x无解,x为全体实数,知识要点,有两个交点x1,x2 (x1x2),有一个交点x0,没有交点,二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系,y0,x1xx2. y0,x2x或xx
5、2 .,y0,x1xx2. y0,x2x或xx2.,y0.x0之外的所有实数;y0,无解,y0.x0之外的所有实数;y0,无解.,y0,所有实数;y0,无解,y0,所有实数;y0,无解,判断方程 ax2+bx+c =0 (a0,a,b,c为常数)一个解x的范围是( )A. 3 x 3.23 B. 3.23 x 3.24C. 3.24 x 3.25 D. 3.25 x 3.26,C,1.根据下列表格的对应值:,当堂练习,2若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2= ;,-1,3.一元二次方程 3x2+x10=0的两个根是x1=2 ,x2= ,那么二次函数 y= 3x2+x10与x轴的交点坐标是 .,(-2,0) ( ,0),4.若一元二次方程 无实根,则抛物线 图象位于( ) A.x轴上方 B.第一、二、三象限 C.x轴下方 D.第二、三、四象限,A,5.二次函数ykx26x3的图象与x轴有交点,则k的取值范围是( ) Ak3 Bk0 ?(3)x取什么值时,y0 ?,解:(1)x1=2,x2=4;,(2)x4;,(3)2x0,0,0,x1 ; x2,x1 =x2 b/2a,没有实数根,xx2,x x1的一切实数,所有实数,x1xx2,无解,无解,课堂小结,见学练优本课时练习,课后作业,