欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    【人教版】2018学年八年级数学上册:11.2.1.1三角形的内角和ppt课件

    • 资源ID:9452       资源大小:1.51MB        全文页数:34页
    • 资源格式: PPT        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【人教版】2018学年八年级数学上册:11.2.1.1三角形的内角和ppt课件

    1、11.2.1 三角形的内角,第十一章 三角形,导入新课,讲授新课,当堂练习,课堂小结,11.2 与三角形有关的角,第1课时 三角形的内角和,八年级数学上(RJ)教学课件,学习目标,2.会运用三角形内角和定理进行计算.(难点),1.会用平行线的性质与平角的定义证明三角形内角和等于180.(重点),我的形状最小,那我的内角和最小.,我的形状最大,那我的内角和最大.,不对,我有一个钝角,所以我的内角和才是最大的.,一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧.,导入新课,情境引入,我们在小学已经知道,任意一个三角形的内角和等于180.与三角形的

    2、形状、大小无关,所以它们的说法都是错误的.,思考:除了度量以外,你还有什么办法可以验证三角形的内角和为180呢?,折叠,还可以用拼接的方法,你知道怎样操作吗?,锐角三角形,测量,480,720,600,6004807201800,(学生运用学科工具量角器测量演示),剪拼,(小组合作,讨论剪拼方法。各小组代表板演剪拼过程),视频:剪拼验证内角和定理,三角形的三个内角拼到一起恰好构成一个平角.,观测的结果不一定可靠,还需要通过数学知识来说明.从上面的操作过程,你能发现证明的思路吗?,还有其他的拼接方法吗?,讲授新课,探究:在纸上任意画一个三角形,将它的内角剪下拼合在一起.,验证结论,三角形三个内角

    3、的和等于180.,求证:A+B+C=180.,已知:ABC.,证法1:过点A作lBC,B=1. (两直线平行,内错角相等) C=2. (两直线平行,内错角相等) 2+1+BAC=180, B+C+BAC=180.,1,2,证法2:延长BC到D,过点C作CEBA, A=1 . (两直线平行,内错角相等)B=2. (两直线平行,同位角相等) 又1+2+ACB=180,A+B+ACB=180.,E,D,E,D,F,证法3:过D作DEAC,作DFAB. C=EDB,B=FDC. (两直线平行,同位角相等)A+AED=180, AED+EDF=180, (两直线平行,同旁内角相补) A=EDF. EDB

    4、+EDF+FDC=180,A+B+C=180.,想一想:同学们还有其他的方法吗?,思考:多种方法证明三角形内角和等于180的核心是什么?,借助平行线的“移角”的功能,将三个角转化成一个平角.,试一试:同学们按照上图中的辅助线,给出证明步骤?,知识要点,在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.,思路总结,为了证明三个角的和为180,转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.,作辅助线,例1 如图,在ABC中, BAC=40 , B=75 ,AD是ABC的角平分线,求ADB的度数.,解:由BAC=40 , AD是ABC的角平

    5、分线,得,BAD= BAC=20 .,在ABD中, ADB=180-B-BAD =180-75-20 =85.,【变式题】如图,CD是ACB的平分线,DEBC,A50,B70,求EDC,BDC的度数,解:A50,B70, ACB180AB60. CD是ACB的平分线, BCD ACB30. DEBC, EDCBCD30, 在BDC中,BDC180BBCD=80.,例2 如图,ABC中,D在BC的延长线上,过D作DEAB于E,交AC于F.已知A30,FCD80,求D.,解:DEAB,FEA90 在AEF中,FEA90,A30, AFE180FEAA60. 又CFDAFE, CFD60. 在CDF

    6、中,CFD60,FCD80, D180CFDFCD40.,基本图形,由三角形的内角和定理易得A+B=C+D.,由三角形的内角和定理易得1+2=3+4.,总结归纳,例3 在ABC 中, A 的度数是B 的度数的3倍,C 比B 大15,求A,B,C的度数.,解: 设B为x,则A为(3x), C为(x 15), 从而有,3x x (x 15) 180.,解得 x 33.,所以 3x 99 , x 15 48.,答: A, B, C的度数分别为99, 33, 48.,几何问题借助方程来解. 这是一个重要的数学思想.,【变式题】在ABC中,A B ACB,CD是ABC的高,CE是ACB的平分线,求DCE

    7、的度数,解析:根据已知条件用A表示出B和ACB,利用三角形的内角和求出A,再求出ACB,ACD,最后根据角平分线的定义求出ACE即可求得DCE的度数,比例关系可考虑用方程思想求角度.,解:A B ACB, 设Ax,B2x,ACB3x. ABACB180, x2x3x180,得x30, A30,ACB90. CD是ABC的高,ADC90, ACD180903060. CE是ACB的平分线, ACE 9045, DCEACDACE604515.,在ABC中,A :B:C=1:2:3,则ABC是_三角形 .,练一练:,在ABC中,A=35, B=43 ,则 C= .,在ABC中, A= B+10,

    8、C= A + 10, 则 A= , B= , C= .,102,直角,60,50,70,例4 如图,C岛在A岛的北偏东50方向,B岛在A岛的北偏东80 方向,C岛在B岛的北偏西40 方向.从B岛看A,C两岛的视角ABC是多少度?从C岛看A、B两岛的视角ACB是多少度?,三角形的内角和定理也常常用在实际问题中.,解: CAB= BAD- CAD=80 -50=30.,由AD/BE,得BAD+ ABE=180 .,所以ABE=180 - BAD=180-80=100, ABC= ABE- EBC=100-40=60.,在ABC中, ACB=180 - ABC- CAB =180-60-30 =90

    9、,答:从B岛看A,C两岛的视角ABC是60 ,从C岛看A,B两岛的视角ACB是90.,【变式题】如图,B岛在A岛的南偏西40方向,C岛在A岛的南偏东15方向,C岛在B岛的北偏东80方向,求从C岛看A,B两岛的视角ACB的度数.,解:如图, 由题意得BEAD,BAD=40, CAD=15,EBC=80, EBA=BAD=40, BAC=40+15=55, CBA=EBC-EBA=80-40=40, ACB=180-BAC-ABC=180-55-40=85,D,E,当堂练习,1.求出下列各图中的x值,x=70,x=60,x=30,x=50,2.如图,则1+2+3+4=_ .,280 ,3.如图,四

    10、边形ABCD中,点E在BC上,A+ADE=180,B=78,C=60,求EDC的度数,解:A+ADE=180, ABDE, CED=B=78 又C=60, EDC=180-(CED+C) =180-(78+60) =42,4.如图,在ABC中,B=42,C=78,AD平分BAC求ADC的度数.,解:B=42,C=78, BAC=180-B-C=60. AD平分BAC, CAD= BAC=30, ADC=180-B-CAD=72.,5.如图,在ABC中,BP平分ABC,CP平分ACB,若BAC=60,求BPC的度数,解:ABC中,A=60, ABC+ACB=120 BP平分ABC,CP平分ACB, PBC+PCB= (ABC+ACB)=60 PBC+PCB+BPC=180, BPC=180-60=120,拓 展,【变式题】你能直接写出BPC与A 之间的数量关系吗?,解:BP平分ABC,CP平分ACB, PBC+PCB= (ABC+ACB)=60 PBC+PCB+BPC=180, BPC=180- (ABC+ACB)=180- (180-A)=90+ A ,课堂小结,三角形的 内角和定理,证明,了解添加辅助线的方法及其目的,内容,三角形内角和等于180 ,


    注意事项

    本文(【人教版】2018学年八年级数学上册:11.2.1.1三角形的内角和ppt课件)为本站会员(Z**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开