欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020届高三精准培优专练十二 数列求和(文) 教师版

    • 资源ID:94614       资源大小:661.66KB        全文页数:11页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020届高三精准培优专练十二 数列求和(文) 教师版

    1、精准培优专练2020届高三好教育精准培优专练培优点十二 数列求和一、分组求和法例1:设公差不为的等差数列的前项和为,且,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和【答案】(1);(2)【解析】(1)由题意,可求得,公差为,即,解得(舍)或,所以,(2)二、裂项相消法例2:设数列的前项和为,且,(1)求数列的通项公式;(2)设,求数列的前项和【答案】(1);(2)【解析】(1),是公比为的等比数列,又,解得,是以为首项,公比为的等比数列,通项公式为(2),数列的前项和三、错位相减法例3:在数列中,有,;在数列中,有前项和(1)求数列和的通项公式;(2)求数列的前项和【答案】(1)

    2、,;(2)【解析】(1)由已知得数列为首项为,公比为的等比数列,在数列中,当时,有,当时,上式也成立,所以(2),两式相减有,对点增分集训一、选择题1已知各项不为的等差数列满足,则前项和( )ABCD【答案】C【解析】由题意可得:,则2已知递增的等比数列的前项和为,若成等差数列,且,( )ABCD【答案】C【解析】因为成等差数列,所以,即,化简得,解得(舍)或,又,所以,3设数列是首项为,公差为的等差数列,为其前项和,若成等比数列,则( )ABCD【答案】A【解析】成等比数列,即,解得,4已知等比数列的各项均为正数,且,成等差数列,令它的前项和为,则( )ABCD【答案】A【解析】设公比为,由

    3、,成等差数列,可得,所以,则,解(舍去)或所以故选A5数列按如下规律排列,则它的前项和( )ABCD【答案】A【解析】观察数列发现它的通项公式为,两式相减可得,6数列的通项公式为,则数列的前项和( )ABCD【答案】B【解析】由题意得,数列的通项公式为,所以数列的前项和7已知数列的前项和为,当时,则的值为( )ABCD【答案】C【解析】当时,故,由得,即,所以,故选C8已知等差数列中,则使成立的最大的值为( )ABCD【答案】B【解析】设等差数列的公差为,则,由,解得,又在数列中为整数,最大的值为故选B二、填空题9已知数列的通项公式为,则它的前项和_【答案】【解析】数列的通项公式为,10等差数

    4、列中,则数列的前项和为_【答案】【解析】在等差数列中,可得,所以数列的公差,所以,则数列的前项和11已知数列中,前项和为若,则数列的前项和为_【答案】【解析】因为,所以所以,又,所以是首项为,公差为的等差数列,则,所以,又也满足,所以,所以所以数列的前项和为12等比数列的前项和,则数列的前项和_【答案】【解析】当时,符合通项公式,所以有,可有,两式相减可得,所以三、解答题13已知数列的各项均为正数,对任意,它的前项和满足,并且,成等比数列(1)求数列的通项公式;(2)设,为数列的前项和,求【答案】(1),;(2)【解析】(1)依题意,当时,有,解得或,对任意,有,当时,有,两式相减并整理得,而

    5、数列的各项均为正数,当时,此时成立;当时,此时舍去,(2)14已知公差不为零的等差数列满足,且,成等比数列(1)求数列的通项公式;(2)若,且数列的前项和为,求证:【答案】(1);(2)证明见解析【解析】(1)设等差数列的首项为,公差为()由题意得,则,化简得,解得,所以(2)证明:,所以15在等比数列与等差数列中,(1)求数列与数列的通项公式;(2)若,求数列的前项和【答案】(1),;(2)【解析】(1)设等比数列的公比为,等差数列的公差为,由,可得,解得,(2)由(1)知:,16已知数列的前项和为(1)求这数列的通项公式;(2)若,求数列的前项和【答案】(1);(2)【解析】(1)当且时,当时,也满足上式,数列的通项公式为(2)由(1)知:,两式相减有,11


    注意事项

    本文(2020届高三精准培优专练十二 数列求和(文) 教师版)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开