欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020届高三精准培优专练七 解三角形(文) 教师版

    • 资源ID:94623       资源大小:1.10MB        全文页数:17页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020届高三精准培优专练七 解三角形(文) 教师版

    1、精准培优专练2020届高三好教育精准培优专练培优点七 解三角形一、正余弦定理的综合应用例1:的内角,的对边分别为,已知,则的最小值为( )ABCD【答案】B【解析】在中,由正弦定理可得,即,又,因为,所以两边平方可得,由,可得,解得,当且仅当时等号成立,又,所以的最小值为故选B二、正余弦定理与三角函数图象性质的综合应用例2:已知函数(1)若,求函数的值域;(2)设的三个内角,所对的边分别为,若为锐角且,求的值【答案】(1);(2)【解析】(1),由,得,即函数的值域为(2)由,得,又由,解得,在中,由余弦定理,解得,由正弦定理,得,三、三角函数模型及其应用例3:某动物园管理处计划利用空地建设一

    2、个开放性的三角形场地(如图),测得,在此三角形场地中挖去一个正三角形形状(如图)的人工湖,该正三角形的顶点在场地的边界线上,则人工湖面积的最小值为 【答案】【解析】由题知为直角三角形,且,且,所以,设正三角形的边长为,则,而,所以,在中,在中,由正弦定理,得,解得,所以,解得而的面积(其中,)因为,所以的最小值为对点增分集训一、选择题1在中,角,的对边分别为,若,点是的重心,且,则的面积为( )ABC或D或【答案】D【解析】由正弦定理得,或,又,延长交于点,当时,的面积为;当时,的面积为,故选D2在中,已知,且为锐角若,且的面积为,则的周长为( )ABCD【答案】C【解析】中,解得或,又为锐角

    3、,设内角,所对的边分别为,又的面积为,为锐角,由余弦定理得,解得,的周长为3在中,角,所对的边分别是,已知,且,则的面积是( )ABC或D或【答案】D【解析】依题意由,即或当时,由正弦定理得,由余弦定理得,解由组成的方程组得,所以三角形面积为当时,时,三角形为直角三角形,故三角形面积综上所述,三角形的面积为或,故选D4已知函数若锐角中角,所对的边分别为、,且,则的取值范围是( )ABCD【答案】B【解析】,由,解得,又为锐角三角形,故,于是的取值范围是5如图,公路,围成的是一块耕地,其中,在该块土地中,处有一小型建筑物,经测量,它到公路,的距离分别为,现在要过点修建一条直线公路,将三条公路围成

    4、的区域建成一个工业园为节省耕地,则工业园的最小面积为( )ABCD【答案】A【解析】过点作,垂足分别为,连接设,(,),则,由得,即又,解得,当且仅当,即,时取等号,即工业园的最小面积为6在中,若,则的最大值为( )ABCD【答案】B【解析】已知条件得,即,当且仅当时取等号,7在中,角、的对边是,若,则的最小值为( )ABCD【答案】D【解析】,由正弦定理化简得:,整理得,当且仅当,即时取等号可得的最小值为,故选D8若函数(,)的部分图象如图所示,分别是图象的最低点和最高点,其中若在锐角中,分别是角、的对边,且,则周长的取值范围是( )ABCD【答案】C【解析】由图象可得:的周期,即,得,又由

    5、于,又将,代入,解得,由,或,解得或(舍去),由正弦定理,得,是锐角三角形,周长的取值范围为二、填空题9如图所示,在一个坡度一定的山坡的顶上有一高度为的建筑物,为了测量该山坡相对水平地面的坡角,在山坡的处测得,沿山坡前进到达处,又测得,根据以上数据可得 【答案】【解析】因为,在中,由正弦定理得,即,在中,由正弦定理得,即,10在中,为的中点,若,则的最小值是 【答案】【解析】根据为的中点,若,得到,化简整理得,即,根据正弦定理得,进一步求得,令,构造函数,令,可知当时,的最小值是11在中,角,所对的边分别为,点为外接圆的圆心,若,且,则的最大值为 【答案】【解析】由,可得,即,化简可得,由正弦

    6、定理可得圆半径为,即,根据余弦定理可知:,又,整理可得,又,得,解得或,当时,点在外部,且,所以,四点共圆,不满足题意,舍去,(当且仅当时取等号),即的最大值为12如图,在中,点在线段上,且,则的面积的最大值为 【答案】【解析】由,可得,则由,可知,则,由同角三角函数基本关系可知:设,(,),在中由余弦定理可得:,在中由余弦定理可得:,由于,故,即,整理可得,在中,由余弦定理可知:,则,代入式整理计算可得,由均值不等式的结论可得,故,当且仅当,时等号成立,即面积的最大值为三、解答题13在中,角,所对的边长分别为,且(1)求的值;(2)若,的面积为,求边【答案】(1);(2)【解析】(1)由及余

    7、弦定理得:,整理得,由余弦定理得(2)在中,又,由得,即,由,可得,由余弦定理得,14已知函数,(1)最小正周期及对称轴方程;(2)已知锐角的内角,的对边分别为,且,求边上的高的最大值【答案】(1),对称轴方程为;(2)【解析】(1),令,即,函数的对称轴方程为(2),即,设边上的高为,则,即,当且仅当时取等号,等号能成立,此时,的最大值为15如图,某市在海岛上建了一水产养殖中心在海岸线上有相距公里的、两个小镇,并且公里,公里,已知镇在养殖中心工作的员工有百人,镇在养殖中心的员工有百人现欲在之间建一个码头,运送来自两镇的员工去养殖中心工作,又知水路运输与陆路运输每百人每公里运输成本之比为(1)求的大小;(2)设,试确定的大小,使得单程运输总成本最少【答案】(1);(2)【解析】(1)在中,(2)在中,由,得,设水路运输的每百人每公里的费用为元,陆路运输的每百人每公里的费用为元,则单程运输总费用,令,则,当时,单调递减;当时,单调递增,时,取最小值,同时也取得最小值,此时,满足,所以点落在之间时,运输总成本最小17


    注意事项

    本文(2020届高三精准培优专练七 解三角形(文) 教师版)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开