欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020届高三精准培优专练十一 数列求通项公式(文) 教师版

    • 资源ID:94828       资源大小:460.41KB        全文页数:7页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020届高三精准培优专练十一 数列求通项公式(文) 教师版

    1、精准培优专练2020届高三好教育精准培优专练培优点十一 数列求通项公式一、公式法例1:数列的前项和,则( )ABCD【答案】C【解析】因为数列的前项和,所以当时,当时,符合上式,所以综上二、构造法例2:已知数列满足,(1)求证:数列是等比数列;(2)求数列的通项公式【答案】(1)证明见解析;(2)【解析】(1)证明:,又,是等比数列,首项为,公比为(2)由(1)可得,解得三、累加累乘法例3:已知数列满足,求数列的通项公式【答案】【解析】,且,即,由累乘法得,则数列是首项为,公差为的等差数列,通项公式为对点增分集训一、选择题1已知数列满足,则( )A1024B1023C2048D2047【答案】

    2、B【解析】根据题意可得,2已知数列的前项和,第项满足,则( )A9B8C7D6【答案】C【解析】时,;时,解得,故选C3设是数列的前项和,且,则( )ABCD【答案】D【解析】由题意,得,所以,又当时,即,所以数列是首项为,公比为的等比数列,所以,故选D4在数列中,则( )ABCD【答案】A【解析】由题意可得,将以上个等式两边相加可得,应选A5已知数列中,为其前项和,则的值为( )A63B31C64D32【答案】A【解析】由条件可得,即是以为首项,以为公比的等比数列,所以,故选A6已知数列的前项和为,则( )ABCD【答案】B【解析】,当时,即,又,故应选B7数列中,则( )ABCD【答案】C

    3、【解析】由题意得,所以,故选C8已知数列的前项和为,且,若对任意的,恒成立,则实数的取值范围为( )ABCD【答案】B【解析】由数列的递推公式可得:,则数列是首项为,公比为的等比数列,分组求和可得,题中的不等式即恒成立,结合恒成立的条件可得实数的取值范围为二、填空题9已知数列的前项和公式为,则数列的通项公式为 【答案】【解析】由题意,可知当时,;当时,又因为不满足,所以10记为数列的前项和,若,则通项公式 【答案】【解析】,又,由,得,两式相减得,即,而,是公比为2的等比数列,故答案为11在数列中,则_【答案】【解析】,即,数列是以首项1,公比为2的等比数列,故答案为12在数列中,已知,则使得

    4、成立的正整数的最小值为_【答案】【解析】因为,所以,所以数列是首项为,公比为的等比数列,所以,易知数列是递增数列,所以使得成立的正整数的最小值为三、解答题13已知是等差数列的前项和,且(1)求数列的通项公式;(2)为何值时,取得最大值并求其最大值【答案】(1);(2)时,取得最大值为【解析】(1)由题意可知:,当时,;当时,当时,显然成立,数列的通项公式(2),由,则时,取得最大值28,当为4时,取得最大值,最大值2814已知数列的前项和为且,求数列的通项公式【答案】【解析】因为,当时,两式相减可得,即,整理可得,解得,所以数列为首项为,公比为的等比数列,15已知数列,(1)求证:是等比数列;(2)设(),求数列的前项和【答案】(1)证明见解析;(2)【解析】(1)依题意,所以,是首项为2、公比为2的等比数列(2)由(1)得,数列的前项和为7


    注意事项

    本文(2020届高三精准培优专练十一 数列求通项公式(文) 教师版)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开