欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    【人教版】2018学年八年级数学上册《13.3.1.1等腰三角形的性质》ppt课件

    • 资源ID:9537       资源大小:2.63MB        全文页数:34页
    • 资源格式: PPT        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【人教版】2018学年八年级数学上册《13.3.1.1等腰三角形的性质》ppt课件

    1、13.3 等腰三角形,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第1课时 等腰三角形的性质,八年级数学上(RJ)教学课件,1.理解并掌握等腰三角形的性质.(重点) 2.经历等腰三角形的性质的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点),导入新课,等腰三角形,情境引入,定义及相关概念 有两条边相等的三角形叫做等腰三角形.,等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.,底边,讲授新课,剪一剪:把一张长方形的纸按图中的红线对折,并剪去阴影部分(一个直角三角形),再把得到的直角三角形展开,得到的三角形ABC有什么特点?,互动

    2、探究,A,B,C,AB=AC,等腰三角形,折一折:ABC 是轴对称图形吗?它的对称轴是什么?,折痕所在的直线是它的对称轴.,等腰三角形是轴对称图形.,找一找:把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.,A,C,B,D,AB与AC,BD与CD,AD与AD,B 与C.,BAD 与CAD,ADB 与ADC,猜一猜: 由这些重合的角,你能发现等腰三角形的性质吗?说一说你的猜想.,A,B,C,已知:ABC中,AB=AC,求证:B=C.,思考:如何构造两个全等的三角形?,猜想:等腰三角形的两个底角相等,如何证明两个角相等呢?,可以运用全等三角形的性质“对应角相等”来证,已知: 如图,在A

    3、BC中,AB=AC. 求证: B= C.,D,证明:,作底边的中线AD,则BD=CD.,AB=AC ( 已知 ),,BD=CD ( 已作 ),,AD=AD (公共边),, BAD CAD (SSS)., B= C (全等三角形的对应角相等).,在BAD和CAD中,方法一:作底边上的中线,还有其他的证法吗?,已知: 如图,在ABC中,AB=AC. 求证: B= C.,D,证明:,作顶角的平分线AD, 则BAD=CAD.,AB=AC ( 已知 ),BAD=CAD ( 已作 ),AD=AD (公共边), BAD CAD (SAS)., B= C (全等三角形的对应角相等).,方法二:作顶角的平分线,

    4、在BAD和CAD中,想一想:由BAD CAD,除了可以得到B= C之外,你还可以得到那些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现?,解:BAD CAD,由全等三角形的性质易得BD=CD,ADB=ADC,BAD=CAD. 又 ADB+ADC=180, ADB=ADC= 90 , 即AD是等腰ABC底边BC上的中线、顶角BAC的角平分线、底边BC上的高线 .,D,性质1:等腰三角形的两个底角相等(等边对等角).,如图,在ABC中, AB=AC(已知), B=C(等边对等角).,证明后的结论,以后可以直接运用.,总结归纳,性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高

    5、线互相重合(三线合一).,AB=AC, 1=2(已知), BD=CD,ADBC(等腰三角形三线合一).,AB=AC, BD=CD (已知), 1=2,ADBC(等腰三角形三线合一).,AB=AC, ADBC(已知), BD=CD, 1=2(等腰三角形三线合一).,综上可得:如图,在ABC中,画出任意一个等腰三角形的底角平分线、这个底角所对的腰上的中线和高,看看它们是否重合?,不重合!,为什么不一样?,“三线合一”的操作,1.等腰三角形的顶角一定是锐角. 2.等腰三角形的底角可能是锐角或者直角、钝角都可以. 3.钝角三角形不可能是等腰三角形. 4.等腰三角形的顶角平分线一定垂直底边. 5.等腰三

    6、角形的角平分线、中线和高互相重合. 6.等腰三角形底边上的中线一定平分顶角.,(X),(X),(X),(X),(),明辨是非,(),例1 如图,在ABC中 ,AB=AC,点D在AC上,且BD=BC=AD,求ABC各角的度数.,典例精析,分析:(1)找出图中所有相等的角;,(2)指出图中有几个等腰三角形?,A=ABD,C=BDC=ABC;,ABC,ABD,BCD.,(3)观察BDC与A、ABD的关系,ABC、C呢?,BDC= A+ ABD=2 A=2 ABD,ABC= BDC=2 A,C= BDC=2 A.,(4)设A=x,请把 ABC的内角和用含x的式子表示出来., A+ ABC+ C=180

    7、 , x+2x+2x=180 ,解:AB=AC,BD=BC=AD, ABC=C=BDC, A=ABD. 设A=x,则BDC= A+ ABD=2x, 从而ABC= C= BDC=2x, 于是在ABC中,有A+ABC+C=x+2x+2x=180 , 解得x=36 ,在ABC中, A=36,ABC=C=72.,如图,在ABC中,AB=AD=DC,BAD=26,求B和C的度数.,解:AB=AD=DC B= ADB,C= DAC设 C=x,则 DAC=x,B= ADB= C+ DAC=2x,在ABC中, 根据三角形内角和定理,得2x+x+26+x=180,解得x=38.5. C= x=38.5, B=2

    8、x=77.,针对训练:,例2 等腰三角形的一个内角是50,则这个三角形的底角的大小是( ) A65或50 B80或40 C65或80 D50或80,解析:当50的角是底角时,三角形的底角就是50;当50的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65.故选A.,A,方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论,例3 已知点D、E在ABC的边BC上,ABAC. (1)如图,若ADAE,求证:BDCE; (2)如图,若BDCE,F为DE的中点,求证:AFBC.,典例精析,证明:(1)如图,过A作 AGBC于G. ABAC,ADAE

    9、, BGCG,DGEG, BGDGCGEG, BDCE; (2)BDCE,F为DE的中点, BDDFCEEF, BFCF. ABAC,AFBC.,图,图,G,方法总结:在等腰三角形有关计算或证明中,有时需要添加辅助线,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,当堂练习,2.如图,在ABC中,AB=AC,过点A作ADBC,若1=70,则BAC的大小为( ) A40 B30 C70 D50,A,1.等腰三角形有一个角是90,则另两个角分别是( ) A30,60 B45,45 C45,90 D20,70,B,3.(1)等腰三角形一个底角为75,它的另外两个角为_ _; (2)等腰三角形一

    10、个角为36,它的另外两个角为_; (3)等腰三角形一个角为120,它的另外两个角为_ _ _.,75, 30,72,72或36,108,30,30,4.在ABC中, AB=AC,AB的垂直平分线与AC所在的直线相交得的锐角为50,则底角的大小为_,70或20,注意:当题目未给定三角形的形状时,一般需分锐角三角形和钝角三角形两种情况进行讨论.,5.如图,在ABC中,AB = AC,D是BC边上的中点,B = 30,求 BAD 和 ADC的度数.,解:AB=AC,D是BC边上的中点,, C= B=30, BAD = DAC,ADC = 90., BAC =180 - 30-30 = 120., =

    11、 60.,6.如图,已知ABC为等腰三角形,BD、CE为底角的平分线,且DBCF,求证:ECDF.,DBCECB. DBCF,ECBF,ECDF.,证明:ABC为等腰三角形,ABAC,,ABCACB.,又BD、CE为底角的平分线,,7.A、B是44网格中的格点,网格中的每个小正方形的边长为1,请在图中标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置,分别以A、B、C为顶角 顶点来分类讨论!,8个,这样分类就不会漏啦!,C1,C2,C3,C4,C5,C6,C7,C8,拓展提升:,课堂小结,等腰三角形的性质,等边对等角,三线合一,注意是指同一个三角形中,注意是指顶角的平分线,底边上的高和中线才有这一性质.而腰上高和中线与底角的平分线不具有这一性质.,


    注意事项

    本文(【人教版】2018学年八年级数学上册《13.3.1.1等腰三角形的性质》ppt课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开